Skip to main content
Log in

Comparison of Detailed Chemical Models of Hydrogen Combustion in Numerical Simulations of Detonation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Four detailed chemical mechanisms used to describe detonation combustion of hydrogen in oxygen are considered. Ignition delays for various temperatures and pressures are found, the Chapman–Jouguet velocity is determined, and the Zel’dovich–von Neumann–Döring solution for different models is obtained. The effect of dilution of the stoichiometric mixture of hydrogen and oxygen by an inert gas is estimated. Direct numerical simulation of detonation wave propagation in a channel is performed. The emergence of instability of the plane wave and formation of a cellular (multifront) structure are studied. The results predicted by different chemical models are analyzed and compared with each other and with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. P. Korobeinikov and V. A. Levin, “Strong Explosion in a Combustible Gas Mixture," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 58–51 (1969).

    Google Scholar 

  2. Yu. A. Nikolaev and D. V. Zak, “Agreement of Models of Chemical Reactions in Gases with the Second Law of Thermodynamics," Fiz. Goreniya Vzryva 24 (4), 87–90 (1988) [Combust., Expl., Shock Waves 24 (4), 461–463 (1988)].

  3. I. A. Bedarev and A. V. Fedorov, “Comparative Analysis of Three Mathematical Models of Hydrogen Ignition," Fiz. Goreniya Vzryva42 (1), 26–33 (2006) [Combust., Expl., Shock Waves42 (1), 19–26 (2006)].

  4. I. A. Bedarev, K. V. Rylova, and A. V. Fedorov, “Application of Detailed and Reduced Kinetic Schemes for the Description of Detonation of Diluted Hydrogen–Air Mixtures," Fiz. Goreniya Vzryva51 (5), 22–33 (2015) [Combust., Expl., Shock Waves51 (5), 528–539 (2015)].

  5. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential–Algebraic Problems(Springer-Verlag, Berlin–Heidelberg, 1996).

    MATH  Google Scholar 

  6. S. Browne, J. Ziegler, and J. E. Shepherd, “Numerical Solution Methods for Shock and Detonation Jump Conditions," GALCIT Report No. FM2006.006–R3 (California Inst. of Technology, 2018).

    Google Scholar 

  7. D. M. Davidenko, I. Gökalp, E. Dufour, and P. Magre, “Systematic Numerical Study of the Supersonic Combustion in an Experimental Combustion Chamber," in 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Paper No. 2006-7913 (2006) ;

  8. R. Deiterding, “Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures," Diss. Doktor der Naturwissenschaften, Technischen Universität Cottbus (Brandenburg, Germany, 2003).

  9. C. K. Westbrook, “Chemical Kinetics of Hydrocarbon Oxidation in Gaseous Detonations," Combust. Flame 46, 191–210 (1982);

    Article  Google Scholar 

  10. G. J. Wilson and R. W. MacCormack, “Modeling Supersonic Combustion using a Fully Implicit Mumerical Method," AIAA J. 30(4), 1008–1015 (1992); doi.org/10.2514/3.11021.

    Article  ADS  Google Scholar 

  11. C. J. Jachimowski, “An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion," NASA TP 2791 (1988).

  12. E. L. Petersen and R. K. Hanson, “Reduced Kinetics Mechanisms for Ram Accelerator Combustion," J. Propul. Power 15(4), 591–600 (1999); doi.org/10.2514/2.5468.

    Article  Google Scholar 

  13. A. Burcat, “Ideal Gas Thermodynamic Data in Polynomial Form for Combustion and Air Pollution Use," garfield.chem.elte.hu/Burcat/burcat.html.

  14. S. P. Borisov, A. N. Kudryavtsev, and A. A. Shershnev, “Development and Validation of the Hybrid Code for Numerical Simulation of Detonations," J. Phys.: Conf. Ser. 1105, 012037 (2018); DOI: .

  15. M. Short and D. S. Stewart, “Cellular Detonation Stability. Part 1. A Normal-Mode Linear Analysis," J. Fluid Mech. 368, 229–262 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. P. Borisov and S. P. Kudryavtsev, “Numerical Simulation of Nonlinear Dynamics of 1D Pulsating Detonations," J. Phys.: Conf. Ser. 894, 012013 (2017); DOI: .

  17. S. P. Borisov, A. N. Kudryavtsev, and A. A. Shershnev, “Influence of Detailed Mechanisms of Chemical Kinetics on Propagation and Stability of Detonation Wave in H2/O2Mixture," J. Phys.: Conf. Ser. 1382, 012052 (2019); DOI: 10.1088/1742-6596/1382/1/012052.

  18. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan,Structure of the Detonation Front in Gases (Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1963) [in Russian].

  19. W. Ficket and W. C. Davis, Detonation (Univ. of California Press, Berkeley, 1979).

  20. G. J. Sharpe and J. J. Quirk, “Nonlinear Cellular Dynamics of the Idealized Detonation Model: Regular Cells," Combust. Theory Model. 12 (1), 1–21 (2008); doi.org/10.1080/13647830701335749.

    Article  ADS  MATH  Google Scholar 

  21. S. P. Borisov and A. N. Kudryavtsev, “Linear and Nonlinear Effects in Detonation Wave Structure Formation," J. Phys.: Conf. Ser.722, 012022 (2016); DOI:

  22. A. N. Kudryavtsev and S. P. Borisov, “Stability of Detonation Waves Propagating in Plane and Rectangular Channels," Fiz. Goreniya Vzryva 56 (1), 105–113 (2020) [Combust., Expl., Shock Waves 56 (1), 92–99 (2020); DOI: 10.1134/S0010508220010116].

    Article  Google Scholar 

  23. R. A. Strehlow, “Transverse Waves in Detonations: II. Structure and Spacing in H2–O2, C2H2–O2, C2H4–O2 and CH4–O2 Systems," AIAA J. 7(3), 492–496 (1969).

    Article  Google Scholar 

  24. M. J. Kaneshige, “Gaseous Detonation Initiation and Stabilization by Hypervelocity Projectiles," Ph. D. Thesis (California Inst. of Technology, Pasadena, 1999).

  25. S. Yungster and K. Radhakrishnan, “Pulsating One-Dimensional Detonations in Hydrogen–Air Mixtures," Combust. Theory Model.8 (4), 745–770 (2004); doi.org/10.1088/1364-7830/8/4/005.

    Article  Google Scholar 

  26. Y. Daimon and A. Matsuo, “Unsteady Features on One-Dimensional Hydrogen-Air Detonations," Phys. Fluids 19 (11), 116101 (2007); doi.org/10.1063/1.2801478.

  27. L. K. Cole, A. R. Karagozian, and J.-L. Cambier, “Stability of Flame-Shock Coupling in Detonation Waves: 1D Dynamics," Combust. Sci. Technol. 184 (10/11), 1502–1525 (2011); DOI: 10.1080/00102202.2012.690316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Borisov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 3, pp. 18–33.https://doi.org/10.15372/FGV20210302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, S.P., Kudryavtsev, A.N. & Shershnev, A.A. Comparison of Detailed Chemical Models of Hydrogen Combustion in Numerical Simulations of Detonation. Combust Explos Shock Waves 57, 270–284 (2021). https://doi.org/10.1134/S0010508221030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221030023

Keywords

Navigation