Skip to main content
Log in

Flowfield-flame structure interactions in an oscillating swirl flame

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A swirling methane-air diffusion flame at atmospheric pressure is stabilized in a gas turbine model combustor with good optical access. The investigated flame with a thermal power of 10 kW and an overall equivalence ratio of 0.75 exhibits pronounced thermoacoustic oscillations at a frequency of 295 Hz. The main goal of the presented work is a detailed experimental characterization of the flame behavior in order to better understand the flame stabilization mechanism and the feedback loop of thermoacoustic instability. OH* chemiluminescence imaging is applied for determining the flame shape and estimating the heat release rate. Laser Raman scattering is used for simultaneous detection of the major species concentrations, mixture fractions, and temperature. The velocity fields are measured by particle image velocimetry (PIV) or stereo PIV, simultaneously with OH planar laser-induced fluorescence. The dynamic pressure in the combustion chamber is determined by microphone probes. The flow-field exhibits a conically shaped inflow of fresh gases and inner and outer recirculation zones. The instantaneous flame structures are dominated by turbulent fluctuations; however, phase-correlated measurements reveal phase-dependent changes in all measured quantities. The paper presents examples of measured results, characterizes the main features of the flame behavior, explains the feedback loop of the oscillation, and discusses the flame stabilization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gupta, D. Lilley, and N. Syred, Swirl Flows, Abacus Press, Kent (1984).

    Google Scholar 

  2. N. Syred and J. Beer, “Combustion in swirling flows: A review,” Combust. Flame, 23, 143–210 (1974).

    Article  Google Scholar 

  3. R. Weber and J. Dugue, “Combustion accelerated swirling flows in high confinements,” Prog. Energ. Combust. Sci., 18, 349–367 (1992).

    Article  ADS  Google Scholar 

  4. S. Correa, “Power generation and aero propulsion gas turbines from combustion science to combustion technology,” Proc. Combust. Inst., 27, 1793–1807 (1998).

    Google Scholar 

  5. A. Lefebvre, Gas Turbine Combustion, Taylor and Francis, Philadelphia (1999).

    Google Scholar 

  6. H. Bauer, “New low emission strategies and combustor designs for civil aero engine applications,” Prog. Comput. Fluid Dyn., 4, 130–142 (2004).

    Article  Google Scholar 

  7. K. Syed and E. Buchanan, “The nature of NOx formation within an industrial gas turbine dry low emission combustor,” in: Proc. of ASME Turbo Expo, GT-2005-68070, Nevada (2005).

  8. J. Keller, “Thermoacoustic oscillations in combustion chambers of gas turbines,” AIAA J., 33, 2280–2287 (1995).

    Article  MATH  ADS  Google Scholar 

  9. C. Paschereit, K. Gutmark, and W. Weisenstein, “Structure and control of thermoacoustic instabilities in a gas turbine combustor,” Combust. Sci. Technol., 138, 213–232 (1998).

    Article  Google Scholar 

  10. S. Candel, “Combustion dynamics and control: Progress and challenges,” Proc. Combust. Inst, 29, 1–28 (2002).

    Article  Google Scholar 

  11. J. Lee and D. Santavicca, “Experimental diagnostics for the study of combustion instabilities in lean premixed combustors,” J. Propuls. Power, 19, 735–750 (2003).

    Article  Google Scholar 

  12. N. Syred, “A review of oscillation mechanisms and the role of precessing vortex core (PVC) in swirl combustion systems,” Prog. Energ. Combust. Sci., 32, 93–161 (2006).

    Article  Google Scholar 

  13. W. Meier, P. Weigand, X. Duan, and R. Giezendanner-Thoben, “Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame,” Combust. Flame, 150, 2–26 (2007).

    Article  Google Scholar 

  14. T. Lieuwen and V. Yang (eds.), Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Amer. Inst. of Aeronautics and Astronautics, Inc., Reston, Virginia (2006).

    Google Scholar 

  15. R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, and M. Aigner, “Periodic combustion instabilities in a swirl burner studied by phaselocked planar laser-induced fluorescence,” Combust. Sci. Technol., 175, 721–741 (2003).

    Article  Google Scholar 

  16. X. Duan, P. Weigand, U. Meier, O. Keck, B. Lehmann, W. Stricker, and M. Aigner, “Experimental investigations and laser based validation measurements in a gas turbine model combustor,” Prog. Comput. Fluid Dyn., 4, 175–182 (2004).

    Article  Google Scholar 

  17. W. Meier, X. Duan, and P. Weigand, “Reaction zone structures and mixing characteristics of partially premixed swirling CH4/air flames in a gas turbine model combustor,” Proc. Combust. Inst., 30, 835–842 (2005).

    Article  Google Scholar 

  18. X. R. Duan, W. Meier, P. Weigand, and B. Lehmann, “Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor,” Appl. Phys. B, 80, 389–396 (2005).

    Article  ADS  Google Scholar 

  19. P. Weigand, W. Meier, X. Duan, R. Giezendanner, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbulence Combust., 75, 275–292 (2005).

    Article  MATH  Google Scholar 

  20. R. Giezendanner, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH-PLIF thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl. Opt., 44, 6565–6577 (2005).

    Article  ADS  Google Scholar 

  21. P. Weigand, W. Meier, X. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor. I. Flow field, structures, temperature, and species distributions,” Combust. Flame, 144, 205–224 (2006).

    Article  Google Scholar 

  22. W. Meier, X. Duan, and P. Weigand, “Investigations of swirl flames in a gas turbine model combustor II. Turbulence-chemistry interactions,” Combust. Flame, 144, 225–236 (2006).

    Article  Google Scholar 

  23. R. Sadanandan, M. Stohr, and W. Meier, “Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor,” Appl. Phys. B, 90, 609–618 (2008).

    Article  ADS  Google Scholar 

  24. M. Caom, H. Eickhoff, F. Joos, and B. Simon, “Influence of operating conditions on the atomisation and distribution of fuel by air blast atomizers,” in: ASME Propulsion and Energetics Panel 70th Symposium, Crete 422 (1987), pp. 8.1–8.8.

  25. P. Weigand, “Untersuchung periodischer Instabilitaten von eingeschlossenen turbulenten Drallflammen mit Lasermessverfahren,” DLR Forschungsbericht 2007-19, Stuttgart (2007).

  26. T. Sattelmayer, “Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations,” J. Eng. Gas Turbin. Power, 125, 11–19 (2003).

    Article  Google Scholar 

  27. M. Zhu, A. Dowling, and K. Bray, “Forced oscillations in combustors with spray atomizers,” J. Eng. Gas Turbin. Power, 124, 20–30 (2002).

    Article  Google Scholar 

  28. M. Stohr, R. Sadanandan, and W. Meier, “Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor,” Proc. Combust. Inst., 32, 2925–2932 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sadanandan.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 5, pp. 16–28, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadanandan, R., Stöhr, M. & Meier, W. Flowfield-flame structure interactions in an oscillating swirl flame. Combust Explos Shock Waves 45, 518–529 (2009). https://doi.org/10.1007/s10573-009-0063-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0063-z

Key words

Navigation