Skip to main content
Log in

Experimental and numerical methods for studying the flame structure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Laminar premixed flames under laboratory conditions often at reduced pressures are of great interest for combustion chemistry and environmental pollution. Recently, there has been considerable progress in studying the combustion of hydrocarbons, oxygenates, and their mixtures. Methods of laser diagnostics, including cavity ring-down spectroscopy and laser induced fluorescence, combined with a number of mass spectrometry techniques for in situ studies of flames allow measurements of concentrations of major species and intermediate products in flames. The structure of fuel molecules and the effect of fuel composition on the structure of intermediate products were studied from the viewpoint of formation of undesired and potentially harmful combustion products in hydrocarbon and oxygenate flames. Chemiluminescence was studied using data on collisional energy transfer. Low-temperature combustion of strongly diluted mixtures in a flow type reactor was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Department of Energy, USA. Information available at: http://www.doe.gov/energysources/fossilfuels.htm (accessed 07/08/08).

  2. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels: Report on the Workshop held by the Office of Basic Energy Sciences of the Department of Energy, Washington, USA, November 2006; http://www.sc.doe.gov/bes/reports/files/CTFrtp.pdf (accessed 07/08/08).

  3. IPCC Fourth Assessment Report Climate Change 2007, Intergovernmental Panel on Climate Change, November 2007; http://www.ipcc.ch/ipccreports/ar4-syr.htm (accessed (07/08/08).

  4. A. Demirbas, “Progress and recent trends in biofuels,” Prog. Energy Combust. Sci. 33, 1–18 (2007).

    Article  Google Scholar 

  5. A. K. Agarwal, “Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines,” ibid., pp. 233–271.

    Article  Google Scholar 

  6. M. S. Graboski and R. L. McCormick, “Combustion of fat and vegetable oil derived fuels in diesel engines,” Prog. Energ. Combust. Sci., 24, 125–164 (1998).

    Article  Google Scholar 

  7. N. M. Ribeiro, A. C. Pinto, C. M. Quintella, et al., “The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: A review,” Energ. Fuels, 21, 2433–2445 (2007).

    Article  Google Scholar 

  8. J. A. Miller, M. J. Pilling, and J. Troe, “Unravelling combustion mechanisms through a quantitative understanding of elementary reactions,” Proc. Combust. Inst., 30, 43–88 (2005).

    Article  Google Scholar 

  9. C. S. McEnally, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap,” Prog. Energ. Combust. Sci., 32, 247–294 (2006).

    Article  Google Scholar 

  10. H. Richter and J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot — a review of chemical reaction pathways,” Prog. Energ. Combust. Sci., 26, 565–608 (2000).

    Article  Google Scholar 

  11. K. Kohse-Höinghaus, R. S. Barlow, M. Aldén, and J. Wolfrum, “Combustion at the focus: Laser diagnostics and control,” Proc. Combust. Inst., 30, 89–123 (2005).

    Article  Google Scholar 

  12. K. Kohse-Höinghaus and J. B. Jeffries (eds.), Applied Combustion Diagnostics, Taylor and Francis, New York (2002).

    Google Scholar 

  13. S. Cheskis, “Quantitative measurements of absolute concentrations of intermediate species in flames,” Prog. Energ. Combust. Sci., 25, 233–252 (1999).

    Article  Google Scholar 

  14. X. Mercier, E. Therssen, J. F. Pauwels, and P. Desgroux, “Measurements of absolute concentration profiles of C2 in non-sooting and sooting diffusion flames by coupling cavity ring-down spectroscopy and laser induced fluorescence,” Proc. Combust. Inst., 30, 1655–1663 (2005).

    Article  Google Scholar 

  15. J. C. Biordi, “Molecular beam mass spectrometry for studying the fundamental chemistry of flames,” Prog. Energ. Combust. Sci., 3, 151–173 (1977).

    Article  Google Scholar 

  16. T. A. Cool, K. Nakajima, T. A. Mostefaoui, et al., “Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry,” J. Chem. Phys., 119, 8356–8365 (2003).

    Article  ADS  Google Scholar 

  17. T. A. Cool, A. McIlroy, F. Qi, et al., “Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source,” Rev. Sci. Instr., 76, 094102 (2005).

    Article  ADS  Google Scholar 

  18. C. Huang, L. Wei, B. Yang, et al., “Lean premixed gasoline/oxygen flame studied with tunable synchrotron vacuum UV photoionization,” Energy Fuels, 20, 1505–1513 (2006).

    Article  Google Scholar 

  19. C. A. Taatjes, N. Hansen, A. McIlroy, et al., “Enols are common intermediates in hydrocarbon oxidation,” Science, 308, 1887–1889 (2005).

    Article  ADS  Google Scholar 

  20. C. A. Taatjes, N. Hansen, D. L. Osborn, K. Kohse-Höinghaus, T. A. Cool, and P. R. Westmoreland, “Imaging combustion chemistry via multiplexed synchrotronphotoionization mass spectrometry,” Phys. Chem. Chem. Phys., 10, 20–34 (2008).

    Article  Google Scholar 

  21. N. Hansen, T. A. Cool, P. R. Westmoreland, and K. Kohse-Höinghaus, “Recent contributions of flamesampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry,” Prog. Energ. Combust. Sci., 35, 168–191 (2009).

    Article  Google Scholar 

  22. N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law, C. A. Taatjes, K. Kohse-Höinghaus, J. Wang, and T. A. Cool, “Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame,” J. Phys. Chem., A, 111, 4081–4092 (2007).

    Article  Google Scholar 

  23. M. E. Law, P. R. Westmoreland, T. A. Cool, J. Wang, N. Hansen, C. A. Taatjes, and T. Kasper, “Benzene precursors and formation routes in a stoichiometric cyclohexane flame,” Proc. Combust. Inst., 31, 565–573 (2007).

    Article  Google Scholar 

  24. N. Hansen, S. J. Klippenstein, P. R. Westmoreland, T. Kasper, K. Kohse-Höinghaus, J. Wang, and T. A. Cool, “A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames,” Phys. Chem. Chem. Phys., 10, 366–374 (2008).

    Article  Google Scholar 

  25. Y. Li, L. Wei, Z. Tian, B. Yang, J. Wang, T. Zhang, and F. Qi, “A comprehensive experimental study of lowpressure premixed C3-oxygenated hydrocarbon flames with tunable synchrotron photoionization,” Combust. Flame., 152, 336–359 (2008).

    Article  Google Scholar 

  26. T. S. Kasper, P. Osswald, M. Kamphus, and K. Kohse-Höinghaus, “Ethanol flame structure investigated by molecular beam mass spectrometry,” Combust. Flame, 150, 220–231 (2007).

    Article  Google Scholar 

  27. B. Yang, P. Osswald, Y. Li, J. Wang, L. Wei, Z. Tian, F. Qi, and K. Kohse-Höinghaus, “Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure,” Combust. Flame, 148, 198–209 (2007).

    Article  Google Scholar 

  28. T. A. Cool, J. Wang, N. Hansen, P. R. Westmoreland, F. L. Dryer, Z. Zhao, A. Kazakov, T. Kasper, and K. Kohse-Höinghaus, “Photoionization mass spectrometry and modeling studies of the chemistry of fuel-rich dimethyl ether flames,” Proc. Combust. Inst., 31, 285–293 (2007).

    Article  Google Scholar 

  29. P. Osswald, U. Struckmeier, T. Kaspe, K. Kohse-Höinghaus, J. Wang, T. A. Cool, N. Hansen, and P. R. Westmoreland, “Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters,” J. Phys. Chem., A, 111, 4093–4101 (2007).

    Article  Google Scholar 

  30. T. Kasper, U. Struckmeier, P. Osswald, and K. Kohse-Höinghaus, “Structure of a stoichiometric propanol flame at low pressure,” Proc. Combust. Inst., 32, 1285–1292 (2009).

    Article  Google Scholar 

  31. K. Kohse-Höinghaus, P. Osswald, U. Struckmeier, T. Kasper, N. Hansen, C. A. Taatjes, J. Wang, T. A. Cool, S. Gon, and P. R. Westmoreland, “The influence of ethanol addition on premixed fuel-rich propeneoxygen-argon flames,” Proc. Combust. Inst., 31, 1119–1127 (2007).

    Article  Google Scholar 

  32. J. Wang, U. Struckmeier, B. Yang, T. A. Cool, P. Osswald, K. Kohse-Höinghaus, T. Kasper, N. Hansen, and P. R. Westmoreland, “Isomer-specific influences on the composition of reaction intermediates in dimethyl ether/propene and ethanol/propene flames,” J. Phys. Chem., A, 112, 9255–9265 (2008).

    Article  Google Scholar 

  33. A. Lucassen, P. Osswald, U. Struckmeier, K. Kohse-Höinghaus, T. Kasper, N. Hansen, T. A. Cool, and P. R. Westmoreland, “Species identification in a laminar premixed low-pressure flame of morpholine as a model substance for oxygenated nitrogen-containing fuels,” Proc. Combust. Inst., 32, 1269–1276 (2008).

    Article  Google Scholar 

  34. F. Biagioli, F. Güthe, and B. Schuermans, “Combustion dynamics linked to flame behavior in a partially premixed swirled industrial burner,” Exp. Thermal Fluid Sci., 32, 1344–1353 (2008).

    Article  Google Scholar 

  35. M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst., 31, 99–124 (2007).

    Article  Google Scholar 

  36. M. de Joannon, A. Cavaliere, T. Faravelli, E. Ranzi, P. Sabea, and A. Tregrossi, “Analysis of process parameters for steady operation in methane mild combustion technology,” Proc. Combust. Inst., 30, 2605–2612 (2005).

    Article  Google Scholar 

  37. S. Candel, “Combustion dynamics and control: progress and challenges,” Proc. Combust. Inst., 29, 1–28 (2002).

    Article  Google Scholar 

  38. Y. Hardalupas, M. Orain, C. S. Panoutsos, et al., “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Thermal Eng., 24, 1619–1632 (2004).

    Article  Google Scholar 

  39. P. Gopalakrishnan, M. K. Bobba, and J. M. Seitzman, “Controlling mechanisms for low NOx emissions in a non-premixed stagnation point reverse flow combustor,” Proc. Combust. Inst., 31, 3401–3408 (2007).

    Article  Google Scholar 

  40. J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH (A), CH (A) and C2 (d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame, 140, 34–45 (2005).

    Article  Google Scholar 

  41. G. P. Smith and C. Park Luque J. “A note on chemiluminescence in low-pressure hydrogen and methanenitrous oxide flames,” Combust. Flame, 140, 385–389 (2005).

    Article  Google Scholar 

  42. J. De Vries, J. M. Hall, S. L. Simmons, M. J. A. Rickard, D. M. Rickard, and E. L. Petersen, “Ethane ignition and oxidation behind reflected shock waves,” Combust. Flame, 150, 137–150 (2007).

    Article  Google Scholar 

  43. A. Schocker, K. Kohse-Höinghaus, and A. Brockhinke, “Quantitative determination of combustion intermediates with cavity ring-down spectroscopy: Systematic study in propene flames near the soot-formation limit,” Appl. Optics., 44, 6660–6672 (2005).

    Article  ADS  Google Scholar 

  44. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames,” Appl. Phys. B, 70, 435–445 (2000).

    Article  ADS  Google Scholar 

  45. W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B, 78, 519–533 (2004).

    Article  ADS  Google Scholar 

  46. M. Kamphus, M. Braun-Unkhoff, and K. Kohse-Höinghaus, “Formation of small PAHs in laminar premixed low-pressure propene and cyclopentene flames: Experiment and modeling,” Combust. Flame, 52, 28–59 (2008).

    Article  Google Scholar 

  47. M. Letzgus, A. Brockhinke, and K. Kohse-Höinghaus, LASKINv2 — A Simulation Program for Time-Resolved LIF-Spectra, Bielefeld University, Chemistry Department, Physical Chemistry 1; http://pc1.unibielefeld.de/laskin (accessed 07/08/08).

  48. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers,” ACM Trans. Math. Software, 31, 363–396 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  49. N. Bahlawane, “Kinetics of methane combustion over CVD-made cobalt catalysts,” Appl. Catalysis, B, 67, 168–176 (2006).

    Article  Google Scholar 

  50. H. Richter, S. Granata, W. H. Green, and J. B. Howard, “Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame,” Proc. Combust. Inst., 30, 1397–1405 (2005); The mechanism is available at: http://web.mit.edu/anish/www/MITcomb.html (accessed 07/08/08).

    Article  Google Scholar 

  51. J. Luque and D. R. Crosley, LIFBASE: Database and Spectral Simulation Program, SRI Report No. MP 98-021 (1998); The current version 2.0 is available at: http://www.sri.com/psd/lifbase/ (accessed 07/15/2008).

  52. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame,” Combust. Flame, 121, 610–624 (2000).

    Article  Google Scholar 

  53. R. J. Cattolica, S. Yoon, and E. L. Knuth, “OH concentration in an atmospheric-pressure methane-air flame from molecular-beam mass spectrometry and laserabsorption spectroscopym” Combust. Sci. Technol., 28, 225–239 (1982).

    Article  Google Scholar 

  54. P. Desgroux, L. Gasnot, J. F. Pauwels, and L. R. Sochet, “Correction of LIF temperature measurements for laser absorption and fluorescence trapping in a flame. Application to the thermal perturbation study induced by a sampling problem” Appl. Phys., B, 61, 401–407 (1995).

    Article  ADS  Google Scholar 

  55. J. D. Bittner and J. B. Howard, “Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame,” Proc. Combust. Inst., 18, 1105–1116 (1981).

    Google Scholar 

  56. M. Heusing, “Temperatur-imaging durch laserinduzierte Fluoreszenzspektroskopie an Stickstoffmonoxidm” Bachelor Thesis, Bielefeld University, July 2008.

  57. D. Hu, M. Braun-Unkhoff, and P. Frank, “Modeling study of soot formation at high pressures,” Combust. Sci. Technol., 149, 79–94 (1999).

    Article  Google Scholar 

  58. A. Lamprecht, B. Atakan, and K. Kohse-Höinghaus, “Fuel-rich flame chemistry in low-pressure cyclopentene flames,” Proc. Combust. Inst., 28, 1817–1824 (2000).

    Article  Google Scholar 

  59. C. K. Westbrook, W. J. Pitz, P. R. Westmoreland, et al., “A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames,” Proc. Combust. Inst., 32, 221–228 (2008).

    Article  Google Scholar 

  60. J. Wu, K. H. Song, T. Litzinger, S. Y. Lee, R. Santoro, M. Linevsky, M. Colket, and D. Liscinsky, “Reduction of PAH and soot in premixed ethylene-air flames by addition of ethanol,” Combust. Flame, 144, 675–687 (2006).

    Article  Google Scholar 

  61. Z. Zhao, M. Chaos, A. Kazakov, and F. L. Dryer, “Thermal decomposition reaction and com-prehensive kinetic model of dimethyl ether,” Int. J. Chem. Kin., 40, 1–18 (2008).

    Article  Google Scholar 

  62. S. Dooley, H. J. Curran, and J. M. Simmie “Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate,” Combust. Flame, 153, 2–32 (2008).

    Article  Google Scholar 

  63. S. Gaïl, S. M. Sarathy, M. J. Thomson, P. Diévart, and P. Dagaut, “Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate,” Combust. Flame, 155, 635–650 (2008).

    Article  Google Scholar 

  64. A. Brockhinke, U. Lenhard, A. Bülter, and K. Kohse-Höinghaus, “Energy transfer in the OH A2Σ+ state: The role of polarization and of multi-quantum energy transfer,” Phys. Chem. Chem. Phys., 7, 874–881 (2005).

    Article  Google Scholar 

  65. U. Struckmeier, N. Bahlawane, and K. Kohse-Höinghaus, Unpublished results (2008).

  66. C. S. McEnally and L. D. Pfefferle, “The effects of dimethyl ether and ethanol on benzene and soot formation in ethylene nonpremixed flames,” Proc. Combust. Inst., 31, 603–610 (2007).

    Article  Google Scholar 

  67. C. S. McEnally and L. D. Pfefferle, Fuel decomposition and hydrocarbon growth processes for oxygenated hydrocarbons: Butyl alcohols,” Proc. Combust. Inst., 30, 1363–1370 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kohse-Höinghaus.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 5–21, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohse-Höinghaus, K., Brockhinke, A. Experimental and numerical methods for studying the flame structure. Combust Explos Shock Waves 45, 349–364 (2009). https://doi.org/10.1007/s10573-009-0046-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0046-0

Key words

Navigation