Skip to main content
Log in

Evolution of 100-µm aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. I. Experimental approach

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents a quenching/sampling method for studying the evolution of monodisperse particles based on a comparison of the parameters of a set of particles before and after combustion. Burning 100-µm aluminum agglomerates were produced using inclusions of a metallized propellant in the form of ∅130 × 150 µm cylinders introduced into a nonmetallized propellant. In experiments with 100-µm aluminum particles, the latter were also introduced into the nonmetallized propellant. A description is given of the procedures employed in the particle-size and morphological analyses, particle density determination, and calculations the combustion time and the residence time in the flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Pokhil, A. F. Belyaev, Yu. F. Frolov, V. S. Logachev, and A. I. Korotkov, Combustion of Powder Metals in Active Media [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  2. V. A. Il’inskii and I. N. Sadovskii (eds.), Heterogeneous Combustion [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  3. A. G. Istratov, V. I. Kolesnikov-Svinarev, G. P. Kuznetsov, and O. I. Leipunskii, “Combustion of a single aluminum particle under zero gravity,” in: V. S. Avduevskii (ed.), Hydromechanics and Heat Exchange under Zero Gravity [in Russian], Lavrent’ev Institute of Hydrodynamics, Sib. Div., USSR Acad. of Sci., Novosibirsk (1988), pp. 123–131.

    Google Scholar 

  4. V. I. Kolesnikov-Svinarev, G. P. Kuznetsov, and O. I. Leipunskii, “Procedure for multipleparametric study of the combustion of metallic particles in a freely falling chamber,” Combust. Expl. Shock Waves, 19, No. 4, 398–401 (1983).

    Article  Google Scholar 

  5. E. L. Dreizin, “Effect of phase changes on metal-particle combustion processes,” Combust., Expl., Shock Waves, 39, No. 6, 681–693 (2003).

    Article  Google Scholar 

  6. M. V. Beckstead, “Correlating aluminum burning times,” Combust., Expl., Shock Waves, 41,No. 5, 533–546 (2005).

    Article  Google Scholar 

  7. R. W. Bartlett, J. N. Ong, W. M. Ong, and C. A. Papp, “Estimating aluminum particle combustion kinetics,” Combust. Flame, 7, No. 3, 227–234 (1963).

    Article  Google Scholar 

  8. E. W. Price, “Combustion of metalized propellants,” in: K. K. Kuo and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 90: Fundamentals of Solid Propellant Combustion, Chapter 14, Amer. Inst. of Aeronautics and Astronautics, New York (1984), pp. 479–514.

    Google Scholar 

  9. J. C. Melcher, R. L. Burton, and H. Burton, “Combustion of aluminum particles in solid rocket motor flows,” in: V. Yang, T. B. Brill, and Wu-Zhen Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Chapter 2.20, AIAA Inc., Reston (2000), p. 723–747.

    Google Scholar 

  10. T.-K. Liu and C.-F. Hsieh, “Analysis of agglomerate size from burning aluminized AP/RDX/HTPB propellants in quench bomb,” J. Propuls. Power, 12, No. 5, 995–998 (1996).

    Article  Google Scholar 

  11. O. G. Glotov, “Condensed combustion products of aluminized propellants II. Evolution of particles with distance from the burning surface,” Combust., Expl., Shock Waves, 36, No. 4, 476–487 (2000).

    Article  Google Scholar 

  12. O. G. Glotov, V. E. Zarko, V. V. Karasev, T. D. Fedotova, and A. D. Rychkov, “Macrokinetics of combustion of monodisperse agglomerates in the flame of model solid propellant,” Combust., Expl., Shock Waves, 39, No. 5. 552–562 (2003).

    Article  Google Scholar 

  13. O. G. Glotov, “Condensed combustion products of aluminized propellants IV. Influence of the nature of nitramines on aluminum agglomeration,” Combust., Expl., Shock Waves, 42, No. 4, 436–439 (2006).

    Article  Google Scholar 

  14. A. Zenin, G. Kusnezov, and V. Kolesnikov, “Physics of aluminum particle combustion at zero-gravity,” AIAA Paper No. 99-0696, 1–6 (1999).

  15. A. Zenin, G. Kusnezov, and V. Kolesnikov, “Physics of aluminum particle combustion at convection,” AIAA Paper No. 2000-0849, 1–12 (2000).

  16. E. L. Dreizin, “On the mechanism of asymmetric aluminum particle combustion,” Combust. Flame, 117, 841–850 (1999).

    Article  Google Scholar 

  17. O. G. Glotov and V. Ya. Zyryanov, “Condensed combustion products of aluminized propellants. I. A technique for investigating the evolution of dispersephase particles,” Combust., Expl., Shock Waves, 31, No. 1, 72–78 (1995).

    Article  Google Scholar 

  18. O. G. Glotov, V. V. Karasev, V. E. Zarko, T. D. Fedotova, and M. W. Beckstead, “Evolution of aluminum agglomerates moving in combustion products of model solid propellant,” in: K. K. Kuo and L. T. De Luca (eds.), Combustion of Energetic Materials, Begell House, New York (2002), pp. 397–406.

    Google Scholar 

  19. Internet web site http://www.bcad.ru/.

  20. Internet web site http://www.scioncorp.com/.

  21. L. Ya. Gradus, Manual on Dispersion Analysis using a Microscopy Method [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

  22. J. Taylor, An Introduction to Error Analysis, University Press, Oxford (1985).

    MATH  Google Scholar 

  23. G. B. Sinyarev, N. A. Vatolin, B. G. Trusov, and G. K. Moiseev, Use of a Computer for Thermodynamic Calculations of Metallurgical Processes [in Russian], Nauka, Moscow (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Glotov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 6, pp. 52–60, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotov, O.G., Zhukov, V.A. Evolution of 100-µm aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. I. Experimental approach. Combust Explos Shock Waves 44, 662–670 (2008). https://doi.org/10.1007/s10573-008-0100-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0100-3

Key words

Navigation