Skip to main content
Log in

Combustion of Aluminum and Boron Agglomerates Free Falling in Air. II. Experimental Results

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The combustion of 81/19 Al/B agglomerates with a diameter of 320–780 μm in free fall in air was first studied using model monodisperse agglomerates. The dependence of the burning time on size was determined. Burning residue particles have been studied by morphological, chemical, mass, particle size, and elemental (EDS) analyses. It has been found that the essential distinctive features of the combustion mechanism of Al/B agglomerates compared to aluminum are a long combustion duration; a specific core-shell structure of the particles, with boron present in the core and absent in the shell; slight changes in particle mass and diameter during combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. G. Glotov and G. S. Surodin, “Combustion of Aluminum and Boron Agglomerates Free Falling in Air. I. Experimental Approach,” Fiz. Goreniya Vzryva 55(3), 100–109 (2019). [Combust., Expl, Shock Waves 55 (3), 335–344 (2019)].

    Google Scholar 

  2. O. G. Glotov, G. S. Surodin, and O. N. Zhitnitskaya, “Combustion of Aluminum and Boron Model Agglomerates in Free Fall in Air,” in Energetic Materials. Synthesis. Characterization and Processing: 47th Int. Annu. Conf. of ICT, Karlsruhe, Germany, 2016, pp. 110–(1–12).

    Google Scholar 

  3. O. G. Glotov, V. E. Zarko, V. V. Karasev, T. D. Fedo-tova, and A. D. Rychkov, “Macrokinetics of Combustion of Monodisperse Agglomerates in the Flame of a Model Solid Propellant,” Fiz. Goreniya Vzryva 39(5), 74–85 (2003) [Combust., Expl, Shock Waves 39 (5), 552–562 (2003)].

    Google Scholar 

  4. O. G. Glotov and V. A. Zhukov, “Evolution of 100 μm Aluminum Agglomerates and Initially Continuous Aluminum Particles in the Flame of a Model Solid Propellant. I. Experimental Approach,” Fiz. Goreniya Vzryva 44(6), 52–60 (2008) [Combust., Expl., Shock Waves 44 (6), 662–670 (2008)].

    Google Scholar 

  5. O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. I. Experimental Approach,” Fiz. Goreniya Vzryva 49(3), 50–57 (2013) [Combust., Expl., Shock Waves 49 (3), 299–306 (2013)].

    Google Scholar 

  6. L. Ya. Gradus, Handbook on Microscopic Dispersion Analysis (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  7. A. A. Afifi and S. P. Azen, Statistical Analysis: A Computer Oriented Approach (Academic Press, New York, 1972).

    MATH  Google Scholar 

  8. T. D. Fedotova, O. G. Glotov, and V. E. Zarko, “Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders,” Propell, Explos., Pyrotech. 32(2), 160–164 (2007).

    Article  Google Scholar 

  9. O. G. Glotov, V. N. Simonenko, V. E. Zarko, R. K. Tukhtaev, T. F. Grigor’yeva, T. D. Fedotova, “Combustion Characteristics of Propellants Containing Aluminum-Boron Mechanical Alloy,” in Energetic Materials. Structure and Properties: 35th Int. Annu. Conf. of ICT (Karlsruhe, Germany, 2004), pp. 107-(1-16).

    Google Scholar 

  10. M. W. Beckstead, “Correlating Aluminum Burning Time,” Fiz. Goreniya Vzryva 41(5), 55–69 (2005) [Combust., Expl, Shock Waves 41 (5), 533–546 (2005)].

    Google Scholar 

  11. O. G. Glotov, “Combustion of Spherical Agglomerates of Titanium in Air. II. Results of Experiments,” Fiz. Goreniya Vzryva 49(3), 58–71 (2013) [Combust., Expl., Shock Waves 49 (3), 307–319 (2013)].

    Google Scholar 

  12. A. Macek, “Combustion of Boron Particles: Experiment and Theory,” in Fourteenth Symp. (Int.) on Combustion (1973), pp. 1401–1411.

    Google Scholar 

  13. S. Wang, M. Schoenitz, and E. L. Dreizin, “Combustion of Boron and Boron-Containing Reactive Composites in Laminar and Turbulent Air Flows,” Combust. Sci. Technol. 189 (4), 683–697 (2017); DOI: https://doi.org/10.1080/00102202.2016.1246441.

    Article  Google Scholar 

  14. O. G. Glotov, G. S. Surodin, and A. M. Baklanov, “Combustion of Spherical Agglomerates of Titanium in Air. III. Motion of Agglomerates and the Effect of Blowing Velocity on Nanosized Combustion Products and Burning Time,” Fiz. Goreniya Vzryva 55(1), 49–62 (2019) [Combust., Expl., Shock Waves 55 (1), 43–55 (2019)].

    Google Scholar 

  15. V. N. Kornilov and E. N. Kondrat’ev, “Effect of Flame-out on Combustion of Small Particles in an Acoustically Oscillating Flow,” Fiz. Goreniya Vzryva 36(2), 10–16 (2000) [Combust., Expl, Shock Waves 36 (2), 164–170 (2000)].

    Google Scholar 

  16. A. Zenin, G. Kusnezov, and V. Kolesnikov, “Physics of Aluminum Particle Combustion at Zero-Gravity,” AIAA Paper No. 99-0696 (1999), pp. 1–6.

    Google Scholar 

  17. A. Zenin, G. Kusnezov, and V. Kolesnikov, “Physics of Aluminum Particle Combustion at Convection,” AIAA Paper No. 2000-0849 (2000), pp. 1–12.

    Google Scholar 

  18. A. Zenin, G. Kusnezov, and V. Kolesnikov, “Physics of Aluminum Particle Combustion at Ultrasonic Levitation,” AIAA Paper No. 2001-0472 (2001), pp. 1–9.

    Google Scholar 

  19. E. L. Dreizin, “On the Mechanism of Asymmetric Aluminum Particle Combustion,” Combust. Flame 117, 841–850 (1999).

    Article  Google Scholar 

  20. O. G. Glotov and V. A. Zhukov, “Evolution of 100 μ Aluminum Agglomerates and Initially Continuous Aluminum Particles in the Flame of a Model Solid Propellant. II. Results,” Fiz. Goreniya Vzryva 44(6), 61–71 (2008) [Combust., Expl, Shock Waves 44 (6), 671–681 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. G. Glotov or G. S. Surodin.

Additional information

Original Russian Text © O.G. Glotov, G.S. Surodin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glotov, O.G., Surodin, G.S. Combustion of Aluminum and Boron Agglomerates Free Falling in Air. II. Experimental Results. Combust Explos Shock Waves 55, 345–352 (2019). https://doi.org/10.1134/S0010508219030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219030122

Keywords

Navigation