Skip to main content
Log in

Enhancement of combustion of a hydrogen-air mixture by excitation of O2 molecules to the a 1Δ g state

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The possibility of increasing the laminar flame velocity in a hydrogen-air mixture by excitation of O2 molecules into the a 1Δ g singlet state. The presence of 10% of O2(a 1Δ g ) molecules in oxygen is demonstrated to result in noticeable (up to 50%) enhancement of mixture burning. The temperature of combustion products and also the concentrations of H2O, NO, and other constituents increase. The greatest effect of O2(a 1Δ g ) molecules is manifested in combustion of lean mixtures; the least pronounced effect is observed in rich mixtures. These effects are caused by intensification of the chain mechanism in the presence of a super-equilibrium amount of excited O2(a 1Δ g ) molecules in a hydrogen-air mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Brown, “A theoretical study of vibrationally induced reactions in combustion processes,” Combust. Flame, 62, No. 1, 1–12 (1985).

    Article  Google Scholar 

  2. A. M. Starik and N. G. Dautov, “On a possibility of promotion of combustion for H2+O2 mixture by excitation of molecular vibrational degrees of freedom,” Doklady Physics, 39, 424–429 (1994).

    ADS  Google Scholar 

  3. A. M. Starik and N. S. Titova, “Low-temperature initiation of the detonation combustion of gas mixtures in a supersonic flow under excitation of the O2(a 1Δg) state of molecular oxygen,” Doklady Physics, 46, No. 9, 627–632 (2001).

    Article  ADS  Google Scholar 

  4. G. C. Light, “The effect of vibrational excitation on the reaction of O(3 P) with H2 and the distribution of vibrational energy in the product OH,” J. Chem. Phys., 68, No. 6, 2831–2843 (1978).

    Article  ADS  Google Scholar 

  5. A. Lifshitz and H. Teitelbaum, “The unusual effect of reagent vibrational excitation on the rates of endothermic and exothermic elementary combustion reactions,” Chem. Phys., 219, Nos. 2/3, 243–256 (1997).

    Article  Google Scholar 

  6. A. M. Wodtke, “Chemistry with stretched molecules,” Phys. Chem. Earth (C), 26, No. 7, 467–471 (2001).

    Google Scholar 

  7. A. M. Starik and N. S. Titova, “Kinetics of detonation initiation in a supersonic flow of the H2 + O2 (air) mixture with in O2 molecule excitation by resonance laser radiation,” Kinet. Katal., 44, No. 1, 28–39 (2003).

    Article  Google Scholar 

  8. A. M. Starik and B. I. Lukhovitskii, “On mechanisms of intensifying combustion due to the simultaneous excitation of vibrational and electronic states of reacting molecules,” Doklady Physics, 50, No. 5, 252–257 (2005).

    Article  ADS  Google Scholar 

  9. V. Ya. Basevich and S. M. Kogarko, “Mechanism of the influence of the glow discharge products on the velocity of hydrogen-oxygen flames under conditions of an inflammation peninsula,” Kinet. Katal., 7, No. 3, 393–401 (1966).

    Google Scholar 

  10. V. Ya. Basevich and A. A. Belyaev, “Evaluation of hydrogen-oxygen flame velocity increase at singlet oxygen addition,” Chem. Phys. Rep., 8, No. 8, 1124–1127 (1989).

    Google Scholar 

  11. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  12. A. M. Starik and N. S. Titova, “Initiation of combustion of methane-air mixture in a supersonic flow behind a shock wave during laser excitation of O2 molecules,” Tech. Phys., 49, No. 9, 1116–1125 (2004).

    Article  Google Scholar 

  13. R. J. Kee, F. M. Rupley, J. A. Miller, et al., CHEMKIN, Release 4.0, Reaction Design, Inc., San Diego, CA (2004).

    Google Scholar 

  14. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRI-Mech 3.0 (1999). http://www.me.berkeley.edu/gri_mech/version30/text30.html.

  15. M. A. Mueller, T. J. Kim, R. A. Yetter, and F. L. Dryer, “Flow reactor studies and kinetic modeling of the H2/O2 reaction,” Int. J. Chem. Kinet., 31, No. 2, 113–125 (1999).

    Article  Google Scholar 

  16. S. D. Tse, D. L. Zhu, and C. K. Law, “Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres,” Proc. Combust. Inst., 28, 1793–1800 (2000).

    Article  Google Scholar 

  17. K. T. Aung, M. I. Hassan, and G. M. Faeth, “Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure,” Combust. Flame, 109, Nos. 1/2, 1–24 (1997).

    Article  Google Scholar 

  18. S. C. Taylor, “Burning velocity and the influence of flame stretch,” Ph. D. thesis, University of Leeds (1991).

  19. C. K. Law, in: N. Peters and B. Rogg (eds.), Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer-Verlag, Berlin (1993). p. 15.

    Chapter  Google Scholar 

  20. L. T. Cupitt, G. A. Takacs, and G. P. Glass, “Reaction of hydrogen atoms and O2(a 1Δg),” Int. J. Chem. Kinet., 14, No. 5, 487–497 (1982).

    Article  Google Scholar 

  21. V. Ya. Basevich and V. I. Vedeneev, “Rate constant of the reaction H + O2(1Δ) = OH + O,” Khim. Fiz., 4, No. 8, 1102–1106 (1985).

    Google Scholar 

  22. S. W. Mayer and L. Schieber, “Activation energies and rate constants computed for reactions of oxygen with hydrocarbons,” J. Phys. Chem., 72, No. 7, 2628–2631 (1968).

    Article  Google Scholar 

  23. V. V. Naumov, S. A. Zhdanok, A. M. Starik, A. Cenian, and A. P. Chernukho, “Modeling of singlet oxygen production in nonequilibrium O2 gas discharge plasma,” in: Nonequilibrium Processes and Their Applications (contributed papers), Minsk (2002), pp. 62–66.

  24. A. Hicks, S. Norberg, P. Shawcross, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Singlet oxygen generation in a high pressure non-self-sustained electric discharge,” J. Phys. D: Appl. Phys., 38, 3812–3824 (2005).

    Article  ADS  Google Scholar 

  25. K. F. Pliavaka, S. V. Gorbatov, S. V. Shushkov, et al., “Singlet oxygen production in electrical non-self-sustained HV pulsed + DC cross discharge at atmospheric pressure with application to plasma assisted combustion technologies,” in: Nonequilibrium Processes in Combustion and Plasma Based Technologies (contributed papers), Minsk (2006), pp. 186–191.

  26. V. A. Bunev, “Role of atomic hydrogen diffusion in hydrogen flame inhibition,” Combust., Expl., Shock Waves, 42, No. 4, 367–371 (2006).

    Article  Google Scholar 

  27. F. Liu and O. L. Gulder, “Effects of H2 and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames,” Combust. Flame, 143, No. 3, 264–281 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Starik.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 4, pp. 3–12, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, V.E., Starik, A.M. & Titova, N.S. Enhancement of combustion of a hydrogen-air mixture by excitation of O2 molecules to the a 1Δ g state. Combust Explos Shock Waves 44, 371–379 (2008). https://doi.org/10.1007/s10573-008-0062-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0062-5

Key words

Navigation