Skip to main content

Advertisement

Log in

Roles of Phosphorylation of N-Methyl-d-Aspartate Receptor in Chronic Pain

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Phosphorylation of N-methyl-d-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

We did not use any data in the review, and all the materials were collected from the published literature resources.

References

  • Abe T et al (2005) Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain. Eur J Neurosci 22(6):1445–1454

    Article  Google Scholar 

  • Adaikkan C et al (2018) Calcium/calmodulin-dependent protein kinase ii and eukaryotic elongation factor 2 kinase pathways mediate the antidepressant action of ketamine. Biol Psychiatry 84(1):65–75

    Article  CAS  Google Scholar 

  • Aley KO et al (2001) Nociceptor sensitization by extracellular signal-regulated kinases. J Neurosci 21(17):6933–6939

    Article  CAS  Google Scholar 

  • Anderson EM et al (2015) Phosphorylation of the N-methyl-D-aspartate receptor is increased in the nucleus accumbens during both acute and extended morphine withdrawal. J Pharmacol Exp Ther 355(3):496–505

    Article  CAS  Google Scholar 

  • Arvanian VL, Mendell LM (2001) Removal of NMDA receptor Mg(2+) block extends the action of NT-3 on synaptic transmission in neonatal rat motoneurons. J Neurophysiol 86(1):123–129

    Article  CAS  Google Scholar 

  • Ascher P, Nowak L (1986) A patch-clamp study of excitatory amino acid activated channels. Adv Exp Med Biol 203:507–511

    Article  CAS  Google Scholar 

  • Ba M et al (2019) Tat-Src reduced NR2B tyrosine phosphorylation and its interaction with NR2B in levodopa-induced dyskinetic rats model. Behav Brain Res 356:41–45

    Article  CAS  Google Scholar 

  • Bach A et al (2011) Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction. J Med Chem 54(5):1333–1346

    Article  CAS  Google Scholar 

  • Bahia PK et al (2005) A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes. J Neurosci 25(14):3489–3498

    Article  CAS  Google Scholar 

  • Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301

    Article  CAS  Google Scholar 

  • Basbaum AI et al (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  Google Scholar 

  • Battaini F (2001) Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol Res 44(5):353–361

    Article  CAS  Google Scholar 

  • Bayer KU et al (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411(6839):801–805

    Article  CAS  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389–399

    Article  CAS  Google Scholar 

  • Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 15(9):333–339

    Article  CAS  Google Scholar 

  • Blanquet PR (2000) Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol 60(3):211–246

    Article  CAS  Google Scholar 

  • Borsook D (2012) Neurological diseases and pain. Brain 135(Pt 2):320–344

    Article  Google Scholar 

  • Boyce S et al (1999) Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 38(5):611–623

    Article  CAS  Google Scholar 

  • Braithwaite SP et al (2006) Regulation of NMDA receptor trafficking and function by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci 23(11):2847–2856

    Article  Google Scholar 

  • Brenner GJ et al (2004) Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. Eur J Neurosci 20(2):375–384

    Article  Google Scholar 

  • Bu F et al (2015) Phosphorylation of NR2B NMDA subunits by protein kinase C in arcuate nucleus contributes to inflammatory pain in rats. Sci Rep 5:15945

    Article  CAS  Google Scholar 

  • Caputi A et al (1999) CaMKII-dependent phosphorylation of NR2A and NR2B is decreased in animals characterized by hippocampal damage and impaired LTP. Eur J Neurosci 11(1):141–148

    Article  CAS  Google Scholar 

  • Chatterton JE et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415(6873):793–798

    Article  CAS  Google Scholar 

  • Chen L, Huang LY (1991) Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron 7(2):319–326

    Article  Google Scholar 

  • Chen L, Huang LY (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356(6369):521–523

    Article  CAS  Google Scholar 

  • Chen Y et al (2010) Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Mol Pain 6:13

    Article  Google Scholar 

  • Chen BS et al (2012) SAP102 mediates synaptic clearance of NMDA receptors. Cell Rep 2(5):1120–1128

    Article  CAS  Google Scholar 

  • Chen SR et al (2014a) Casein kinase II regulates N-methyl-D-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury. J Pharmacol Exp Ther 350(2):301–312

    Article  Google Scholar 

  • Chen SR et al (2014b) Calcineurin inhibitor induces pain hypersensitivity by potentiating pre- and postsynaptic NMDA receptor activity in spinal cords. J Physiol 592(1):215–227

    Article  CAS  Google Scholar 

  • Cheng HT et al (2008) Inflammatory pain-induced signaling events following a conditional deletion of the N-methyl-D-aspartate receptor in spinal cord dorsal horn. Neuroscience 155(3):948–958

    Article  CAS  Google Scholar 

  • Cheriyan J et al (2011) Calcium/calmodulin dependent protein kinase II bound to NMDA receptor 2B subunit exhibits increased ATP affinity and attenuated dephosphorylation. PLoS ONE 6(3):e16495

    Article  CAS  Google Scholar 

  • Chiu AM et al (2019) NMDAR-activated PP1 dephosphorylates GluN2B to modulate NMDAR synaptic content. Cell Rep 28(2):332-341.e5

    Article  CAS  Google Scholar 

  • Choi SR et al (2016) Neuronal NOS activates spinal NADPH oxidase 2 contributing to central sigma-1 receptor-induced pain hypersensitivity in mice. Biol Pharm Bull 39(12):1922–1931

    Article  CAS  Google Scholar 

  • Choi SR et al (2017) Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J Pain 18(4):415–427

    Article  CAS  Google Scholar 

  • Choi SR et al (2019a) nNOS-PSD95 interactions activate the PKC-ε isoform leading to increased GluN1 phosphorylation and the development of neuropathic mechanical allodynia in mice. Neurosci Lett 703:156–161

    Article  CAS  Google Scholar 

  • Choi SR, Beitz AJ, Lee JH (2019b) Spinal nitric oxide synthase type II increases neurosteroid-metabolizing cytochrome P450c17 expression in a rodent model of neuropathic pain. Exp Neurobiol 28(4):516–528

    Article  Google Scholar 

  • Chung HJ et al (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24(45):10248–10259

    Article  CAS  Google Scholar 

  • Clark AK et al (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30(2):573–582

    Article  CAS  Google Scholar 

  • Colbran RJ (2004) Targeting of calcium/calmodulin-dependent protein kinase II. Biochem J 378(1):1–16

    Article  CAS  Google Scholar 

  • Colloca L et al (2017) Neuropathic pain. Nat Rev Dis Primers 3(1):17002

    Article  Google Scholar 

  • Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004(255):re16

    Article  Google Scholar 

  • Dai W-L et al (2020) Blockade of spinal dopamine D1/D2 receptor suppresses activation of NMDA receptor through Gαq and Src kinase to attenuate chronic bone cancer pain. J Adv Res. https://doi.org/10.1016/j.jare.2020.08.005

    Article  Google Scholar 

  • Dantsuji M et al (2019) 5-HT(2A) receptor activation enhances NMDA receptor-mediated glutamate responses through Src kinase in the dendrites of rat jaw-closing motoneurons. J Physiol 597(9):2565–2589

    Article  CAS  Google Scholar 

  • Daulhac L et al (2011) Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Eur J Pain 15(2):169.e1-169.e12

    Article  Google Scholar 

  • De Felice M et al (2016) Effects of Src-kinase inhibition in cancer-induced bone pain. Mol Pain. https://doi.org/10.1177/1744806916643725

    Article  Google Scholar 

  • Dedek A et al (2019) Loss of STEP61 couples disinhibition to N-methyl-d-aspartate receptor potentiation in rodent and human spinal pain processing. Brain 142(6):1535–1546

    Article  Google Scholar 

  • D’Mello R et al (2011) Perturbing PSD-95 interactions with NR2B-subtype receptors attenuates spinal nociceptive plasticity and neuropathic pain. Mol Ther 19(10):1780–1792

    Article  CAS  Google Scholar 

  • Falk S, Dickenson AH (2014) Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol 32(16):1647–1654

    Article  CAS  Google Scholar 

  • Fan QQ et al (2014) Activation of α2 adrenoceptors inhibited NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice with inflammatory pain. Neuropharmacology 77:185–192

    Article  CAS  Google Scholar 

  • Finnerup NB et al (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. The Lancet Neurology 14(2):162–173

    Article  CAS  Google Scholar 

  • Fong DK et al (2002) Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J Neurosci 22(6):2153–2164

    Article  CAS  Google Scholar 

  • Friedman HV et al (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27(1):57–69

    Article  CAS  Google Scholar 

  • Fukunaga K, Soderling TR, Miyamoto E (1992) Activation of Ca2+/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampal neurons. J Biol Chem 267(31):22527–22533

    Article  CAS  Google Scholar 

  • Galan A et al (2002) Activation of spinal extracellular signaling-regulated kinase-1 and -2 by intraplantar carrageenan in rodents. Neurosci Lett 322(1):37–40

    Article  CAS  Google Scholar 

  • Gangadharan V, Kuner R (2013) Pain hypersensitivity mechanisms at a glance. Dis Model Mech 6(4):889–895

    Article  Google Scholar 

  • Gao X et al (2005) Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain 116(1–2):62–72

    Article  CAS  Google Scholar 

  • Gao X et al (2007) Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain 131(3):262–271

    Article  CAS  Google Scholar 

  • Gardoni F et al (1998) Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem 71(4):1733–1741

    Article  CAS  Google Scholar 

  • Gardoni F et al (2001) Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem 276(10):7609–7613

    Article  CAS  Google Scholar 

  • Gingrich JR et al (2004) Unique domain anchoring of Src to synaptic NMDA receptors via the mitochondrial protein NADH dehydrogenase subunit 2. Proc Natl Acad Sci USA 101(16):6237–6242

    Article  CAS  Google Scholar 

  • Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69(2):164–170

    Article  CAS  Google Scholar 

  • Goebel-Goody SM et al (2009) Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience 158(4):1446–1459

    Article  CAS  Google Scholar 

  • Goebel-Goody SM et al (2012) Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 64(1):65–87

    Article  CAS  Google Scholar 

  • Goldenring JR, McGuire JS Jr, DeLorenzo RJ (1984) Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase. J Neurochem 42(4):1077–1084

    Article  CAS  Google Scholar 

  • Gomez K et al (2020) Cdk5-dependent phosphorylation of Ca(V)3.2 T-type channels: possible role in nerve ligation-induced neuropathic allodynia and the compound action potential in primary afferent C fibers. J Neurosci 40(2):283–296

    Article  CAS  Google Scholar 

  • Grosshans DR, Browning MD (2001) Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J Neurochem 76(3):737–744

    Article  CAS  Google Scholar 

  • Gu X et al (2009) Tyrosine phosphorylation of the N-Methyl-D-aspartate receptor 2B subunit in spinal cord contributes to remifentanil-induced postoperative hyperalgesia: the preventive effect of ketamine. Mol Pain 5:76

    Article  Google Scholar 

  • Guo W et al (2002) Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J Neurosci 22(14):6208–6217

    Article  CAS  Google Scholar 

  • Guo W et al (2004) Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J Neurosci 24(41):9161–9173

    Article  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414

    Article  CAS  Google Scholar 

  • Hellmich MR et al (1992) Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc Natl Acad Sci USA 89(22):10867–10871

    Article  CAS  Google Scholar 

  • Hillman BG et al (2011) Behavioral analysis of NR2C knockout mouse reveals deficit in acquisition of conditioned fear and working memory. Neurobiol Learn Mem 95(4):404–414

    Article  CAS  Google Scholar 

  • Hizue M, Pang CH, Yokoyama M (2005) Involvement of N-methyl-D-aspartate-type glutamate receptor epsilon1 and epsilon4 subunits in tonic inflammatory pain and neuropathic pain. NeuroReport 16(15):1667–1670

    Article  CAS  Google Scholar 

  • Hu YM et al (2014) Casein kinase II inhibition reverses pain hypersensitivity and potentiated spinal N-methyl-D-aspartate receptor activity caused by calcineurin inhibitor. J Pharmacol Exp Ther 349(2):239–247

    Article  Google Scholar 

  • Huang Y et al (2019) PKA-mediated phosphorylation of CREB and NMDA receptor 2B in the hippocampus of offspring rats is involved in transmission of mental disorders across a generation. Psychiatry Res 280:112497

    Article  CAS  Google Scholar 

  • Jatoi A et al (2017) A proof-of-concept trial of protein kinase C iota inhibition with auranofin for the paclitaxel-induced acute pain syndrome. Support Care Cancer 25(3):833–838

    Article  Google Scholar 

  • Javier G, Maria R-M, Pilar S-B (2012) Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance. Curr Drug Abuse Rev 5(3):199–226

    Article  Google Scholar 

  • Ji RR et al (2002) ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 22(2):478–485

    Article  CAS  Google Scholar 

  • Jia GL et al (2020) Cav-1 participates in the development of diabetic neuropathy pain through the TLR4 signaling pathway. J Cell Physiol 235(3):2060–2070

    Article  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531

    Article  CAS  Google Scholar 

  • Jones ML, Leonard JP (2005) PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J Neurochem 92(6):1431–1438

    Article  CAS  Google Scholar 

  • Kasamon YL et al (2018) FDA approval summary: midostaurin for the treatment of advanced systemic mastocytosis. Oncologist 23(12):1511–1519

    Article  CAS  Google Scholar 

  • Katano T et al (2011) Involvement of spinal phosphorylation cascade of Tyr1472-NR2B, Thr286-CaMKII, and Ser831-GluR1 in neuropathic pain. Neuropharmacology 60(4):609–616

    Article  CAS  Google Scholar 

  • Kawamata T, Omote K (1999) Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3,5-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91(5):1415–1424

    Article  CAS  Google Scholar 

  • Kelly PT, McGuinness TL, Greengard P (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 81(3):945–949

    Article  CAS  Google Scholar 

  • Kennedy MB, Bennett MK, Erondu NE (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 80(23):7357–7361

    Article  CAS  Google Scholar 

  • Kumar M et al (2019) Alteration in the phosphorylation status of NMDA receptor GluN2B subunit by activation of both NMDA receptor and L-type voltage gated calcium channel. Neurosci Lett 709:134343

    Article  CAS  Google Scholar 

  • Lai CY et al (2016) SIRPα1-SHP2 interaction regulates complete Freund adjuvant-induced inflammatory pain via Src-dependent GluN2B phosphorylation in rats. Anesth Analg 122(3):871–881

    Article  CAS  Google Scholar 

  • Lan JY et al (2001) Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4(4):382–390

    Article  CAS  Google Scholar 

  • Lau LF, Huganir RL (1995) Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J Biol Chem 270(34):20036–20041

    Article  CAS  Google Scholar 

  • Lee HK et al (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112(5):631–643

    Article  CAS  Google Scholar 

  • Lester RA, Tong G, Jahr CE (1993) Interactions between the glycine and glutamate binding sites of the NMDA receptor. J Neurosci 13(3):1088–1096

    Article  CAS  Google Scholar 

  • Li S et al (2011) NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to N-methyl-D-aspartate-induced pain hypersensitivity in mice. J Neurosci Res 89(11):1869–1876

    Article  CAS  Google Scholar 

  • Li L et al (2015) GABAergic inhibition regulated pain sensitization through STEP61 signaling in spinal dorsal horn of mice. Anesthesiology 122(3):686–697

    Article  CAS  Google Scholar 

  • Li S et al (2017a) Enhancement of spinal dorsal horn neuron NMDA receptor phosphorylation as the mechanism of remifentanil induced hyperalgesia: roles of PKC and CaMKII. Mol Pain 13:1744806917723789

    Article  CAS  Google Scholar 

  • Li DP et al (2017b) CaMKII regulates synaptic NMDA receptor activity of hypothalamic presympathetic neurons and sympathetic outflow in hypertension. J Neurosci 37(44):10690–10699

    Article  CAS  Google Scholar 

  • Li S et al (2017c) BDNF contributes to spinal long-term potentiation and mechanical hypersensitivity via Fyn-mediated phosphorylation of NMDA receptor GluN2B subunit at tyrosine 1472 in rats following spinal nerve ligation. Neurochem Res 42(10):2712–2729

    Article  CAS  Google Scholar 

  • Li XH, Miao HH, Zhuo M (2019) NMDA receptor dependent long-term potentiation in chronic pain. Neurochem Res 44(3):531–538

    Article  CAS  Google Scholar 

  • Liang Y et al (2021) Leptin contributes to neuropathic pain via extrasynaptic NMDAR-nNOS activation. Mol Neurobiol 58(3):1185–1195

    Article  CAS  Google Scholar 

  • Liao GY et al (2001) Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol 59(5):960–964

    Article  CAS  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3(3):175–190

    Article  CAS  Google Scholar 

  • Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(Pt 1):1–15

    Article  CAS  Google Scholar 

  • Liu XJ et al (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med 14(12):1325–1332

    Article  CAS  Google Scholar 

  • Liu S et al (2011) Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents. Cancer Res 71(13):4392–4402

    Article  CAS  Google Scholar 

  • Lu WY et al (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2(4):331–338

    Article  CAS  Google Scholar 

  • Luo XQ et al (2014) Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord contributes to chronic visceral pain in rats. Brain Res 1542:167–175

    Article  CAS  Google Scholar 

  • MacDermott AB et al (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321(6069):519–522

    Article  CAS  Google Scholar 

  • MacDonald JF et al (2001) Convergence of PKC-dependent kinase signal cascades on NMDA receptors. Curr Drug Targets 2(3):299–312

    Article  CAS  Google Scholar 

  • Maduka UP et al (2021) CaMKII binding to GluN2B at S1303 has no role in acute or inflammatory pain. Brain Res 1750:147154

    Article  CAS  Google Scholar 

  • Maki BA, Cole R, Popescu GK (2013) Two serine residues on GluN2A C-terminal tails control NMDA receptor current decay times. Channels (austin) 7(2):126–132

    Article  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation–a decade of progress? Science 285(5435):1870–1874

    Article  CAS  Google Scholar 

  • Matsson L, Sa-yakanit V, Boribarn S (2003) Ligand-gated ion channel currents in a nonstationary lyotropic model. Neurochem Res 28(2):379–386

    Article  CAS  Google Scholar 

  • Matsumura S et al (2010) Impairment of CaMKII activation and attenuation of neuropathic pain in mice lacking NR2B phosphorylated at Tyr1472. Eur J Neurosci 32(5):798–810

    Article  Google Scholar 

  • Mayadevi M et al (2002) Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII. Biochim Biophys Acta 1598(1–2):40–45

    Article  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263

    Article  CAS  Google Scholar 

  • McRoberts JA et al (2011) Selective knockdown of NMDA receptors in primary afferent neurons decreases pain during phase 2 of the formalin test. Neuroscience 172:474–482

    Article  CAS  Google Scholar 

  • Molokie RE et al (2014) Mechanism-driven phase I translational study of trifluoperazine in adults with sickle cell disease. Eur J Pharmacol 723:419–424

    Article  CAS  Google Scholar 

  • Monyer H et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  Google Scholar 

  • Moodie JE et al (2013) A single-center, randomized, double-blind, active, and placebo-controlled study of KAI-1678, a novel PKC-epsilon inhibitor, in the treatment of acute postoperative orthopedic pain. Pain Med 14(6):916–924

    Article  Google Scholar 

  • Moon IS, Apperson ML, Kennedy MB (1994) The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc Natl Acad Sci U S A 91(9):3954–3958

    Article  CAS  Google Scholar 

  • Muller E et al (2013) Vesicular storage of glycine in glutamatergic terminals in mouse hippocampus. Neuroscience 242:110–127

    Article  CAS  Google Scholar 

  • Murphy JA et al (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 34(3):869–879

    Article  CAS  Google Scholar 

  • Nagy GG et al (2004) Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique. Eur J Neurosci 20(12):3301–3312

    Article  Google Scholar 

  • Nakazawa T et al (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276(1):693–699

    Article  CAS  Google Scholar 

  • Nguyen TH, Liu J, Lombroso PJ (2002) Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J Biol Chem 277(27):24274–24279

    Article  CAS  Google Scholar 

  • Nie H, Weng HR (2010) Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats. J Neurophysiol 103(5):2570–2580

    Article  CAS  Google Scholar 

  • Nishimura W et al (2004) Characterization of N-methyl-D-aspartate receptor subunits responsible for postoperative pain. Eur J Pharmacol 503(1–3):71–75

    Article  CAS  Google Scholar 

  • Omkumar RV et al (1996) Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 271(49):31670–31678

    Article  CAS  Google Scholar 

  • Otmakhov N, Griffith LC, Lisman JE (1997) Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J Neurosci 17(14):5357–5365

    Article  CAS  Google Scholar 

  • Otmakhov N et al (2004) Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. J Neurosci 24(42):9324–9331

    Article  CAS  Google Scholar 

  • Pagadala P et al (2013) Loss of NR1 subunit of NMDARs in primary sensory neurons leads to hyperexcitability and pain hypersensitivity: involvement of Ca(2+)-activated small conductance potassium channels. J Neurosci 33(33):13425–13430

    Article  CAS  Google Scholar 

  • Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33(8):1351–1365

    Article  Google Scholar 

  • Pareek TK et al (2006) Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci USA 103(3):791–796

    Article  CAS  Google Scholar 

  • Parsons CG (2001) NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 429(1–3):71–78

    Article  CAS  Google Scholar 

  • Peng HY et al (2009) Estrogen-dependent facilitation on spinal reflex potentiation involves the Cdk5/ERK1/2/NR2B cascade in anesthetized rats. Am J Physiol Endocrinol Metab 297(2):E416–E426

    Article  CAS  Google Scholar 

  • Peng HY et al (2012) Spinal SIRPα1-SHP2 interaction regulates spinal nerve ligation-induced neuropathic pain via PSD-95-dependent NR2B activation in rats. Pain 153(5):1042–1053

    Article  CAS  Google Scholar 

  • Pertovaara A (2006) Noradrenergic pain modulation. Prog Neurobiol 80(2):53–83

    Article  CAS  Google Scholar 

  • Popescu G, Auerbach A (2004) The NMDA receptor gating machine: lessons from single channels. Neuroscientist 10(3):192–198

    Article  CAS  Google Scholar 

  • Pradeep KK et al (2009) Regulation of Ca2+/calmodulin-dependent protein kinase II catalysis by N-methyl-D-aspartate receptor subunit 2B. Biochem J 419(1):123–132

    Article  CAS  Google Scholar 

  • Prybylowski K et al (2005) The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47(6):845–857

    Article  CAS  Google Scholar 

  • Qi F et al (2020) Ketamine reduces remifentanil-induced postoperative hyperalgesia mediated by CaMKII-NMDAR in the primary somatosensory cerebral cortex region in mice. Neuropharmacology 162:107783

    Article  CAS  Google Scholar 

  • Qiu S et al (2013) An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Sci Signal 6(275):ra34

    Article  Google Scholar 

  • Quinlan EM et al (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2(4):352–357

    Article  CAS  Google Scholar 

  • Raja SN et al (2020) The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. Pain 161(9):1976–1982

    Article  Google Scholar 

  • Raveendran R et al (2009) Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II. J Neurochem 110(1):92–105

    Article  CAS  Google Scholar 

  • Rodríguez-Muñoz M et al (2012) The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology 37(2):338–349

    Article  Google Scholar 

  • Rosenberg OS et al (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123(5):849–860

    Article  CAS  Google Scholar 

  • Ruan JP, Chen L, Ma ZL (2019) Activation of spinal extacellular signal-regulated kinases and c-jun N-terminal kinase signaling pathways contributes to morphine-induced acute and chronic hyperalgesia in mice. J Cell Biochem 120(9):15045–15056

    Article  CAS  Google Scholar 

  • Ryu JW et al (2008) Effects of protein phosphatase inhibitors on the phosphorylation of spinal cord N-methyl-D-aspartate receptors following electroacupuncture stimulation in rats. Brain Res Bull 75(5):687–691

    Article  CAS  Google Scholar 

  • Sammons MJ et al (2000) Carrageenan-induced thermal hyperalgesia in the mouse: role of nerve growth factor and the mitogen-activated protein kinase pathway. Brain Res 876(1–2):48–54

    Article  CAS  Google Scholar 

  • Sánchez-Pérez AM, Felipo V (2005) Serines 890 and 896 of the NMDA receptor subunit NR1 are differentially phosphorylated by protein kinase C isoforms. Neurochem Int 47(1–2):84–91

    Article  Google Scholar 

  • Sanderson JL, Dell’Acqua ML (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17(3):321–336

    Article  CAS  Google Scholar 

  • Sanz-Clemente A et al (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67(6):984–996

    Article  CAS  Google Scholar 

  • Sanz-Clemente A et al (2013) Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors. Cell Rep 3(3):607–614

    Article  CAS  Google Scholar 

  • Sarantopoulos CD et al (2007) Opposing effects of spinal nerve ligation on calcium-activated potassium currents in axotomized and adjacent mammalian primary afferent neurons. Brain Res 1132(1):84–99

    Article  CAS  Google Scholar 

  • Sato E et al (2003) Involvement of spinal tyrosine kinase in inflammatory and N-methyl-d-aspartate-induced hyperalgesia in rats. Eur J Pharmacol 468(3):191–198

    Article  CAS  Google Scholar 

  • Sattler R et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848

    Article  CAS  Google Scholar 

  • Scott DB et al (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21(9):3063–3072

    Article  CAS  Google Scholar 

  • Scott DB, Blanpied TA, Ehlers MD (2003) Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 45(6):755–767

    Article  CAS  Google Scholar 

  • Seeburg PH et al (1995) The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog Horm Res 50:19–34

    CAS  Google Scholar 

  • Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284(5411):162–166

    Article  CAS  Google Scholar 

  • Shiokawa H et al (2010) NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn. Mol Pain 6:26

    Article  Google Scholar 

  • Slack SE et al (2004) Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 20(7):1769–1778

    Article  Google Scholar 

  • Slack S et al (2008) EphrinB2 induces tyrosine phosphorylation of NR2B via Src-family kinases during inflammatory hyperalgesia. Neuroscience 156(1):175–183

    Article  CAS  Google Scholar 

  • Soto D et al (2004) Protein kinase CK2 in postsynaptic densities: phosphorylation of PSD-95/SAP90 and NMDA receptor regulation. Biochem Biophys Res Commun 322(2):542–550

    Article  CAS  Google Scholar 

  • South SM et al (2003) A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci 23(12):5031–5040

    Article  CAS  Google Scholar 

  • Suo ZW et al (2017) Striatal-enriched phosphatase 61 inhibited the nociceptive plasticity in spinal cord dorsal horn of rats. Neuroscience 352:97–105

    Article  CAS  Google Scholar 

  • Superti-Furga G, Courtneidge SA (1995) Structure-function relationships in Src family and related protein tyrosine kinases. BioEssays 17(4):321–330

    Article  CAS  Google Scholar 

  • Tang B, Ji Y, Traub RJ (2008) Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain 137(3):540–549

    Article  CAS  Google Scholar 

  • Taniguchi S et al (2009) Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour. Embo J 28(23):3717–3729

    Article  CAS  Google Scholar 

  • Thompson JM, Ji G, Neugebauer V (2015) Small-conductance calcium-activated potassium (SK) channels in the amygdala mediate pain-inhibiting effects of clinically available riluzole in a rat model of arthritis pain. Mol Pain 11:51

    Article  Google Scholar 

  • Tingley WG et al (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 272(8):5157–5166

    Article  CAS  Google Scholar 

  • Toyoda H et al (2007) Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex. Mol Pain 3:36

    Article  Google Scholar 

  • Traynelis SF et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405

    Article  CAS  Google Scholar 

  • Tuttle AH et al (2015) Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain 156(12):2616–2626

    Article  Google Scholar 

  • Ulmann L et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28(44):11263–11268

    Article  CAS  Google Scholar 

  • Walsh DA, McWilliams DF (2014) Mechanisms, impact and management of pain in rheumatoid arthritis. Nat Rev Rheumatol 10(10):581–592

    Article  CAS  Google Scholar 

  • Wang H, Peng RY (2016) Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity. Mil Med Res 3(1):26

    Google Scholar 

  • Wang YT, Salter MW (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369(6477):233–235

    Article  CAS  Google Scholar 

  • Wang J et al (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6(10):1039–1047

    Article  CAS  Google Scholar 

  • Wang N et al (2014) Active calcium/calmodulin-dependent protein kinase II (CaMKII) regulates NMDA receptor mediated postischemic long-term potentiation (i-LTP) by promoting the interaction between CaMKII and NMDA receptors in ischemia. Neural Plast 2014:827161

    Article  Google Scholar 

  • Wang XT et al (2014) α(2) noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain. Eur J Pharmacol 724:16–23

    Article  CAS  Google Scholar 

  • Wang WT et al (2015) Ht31 peptide inhibited inflammatory pain by blocking NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice. Neuropharmacology 89:290–297

    Article  CAS  Google Scholar 

  • Wang XY et al (2018) NR2B-Tyr phosphorylation regulates synaptic plasticity in central sensitization in a chronic migraine rat model. J Headache Pain 19(1):102

    Article  Google Scholar 

  • Wei XH et al (2013) The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 241:159–168

    Article  CAS  Google Scholar 

  • Weilinger NL et al (2016) Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 19(3):432–442

    Article  CAS  Google Scholar 

  • WHO (2018) International Classification of Diseases 11th Revision. The Global Standard for Diagnostic Health Information. https://icd.who.int/. Accessed 11 Nov 2019.

  • Wigerblad G et al (2017) Inflammation-induced GluA1 trafficking and membrane insertion of Ca(2+) permeable AMPA receptors in dorsal horn neurons is dependent on spinal tumor necrosis factor, PI3 kinase and protein kinase A. Exp Neurol 293:144–158

    Article  CAS  Google Scholar 

  • Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306(5944):686–688

    Article  CAS  Google Scholar 

  • Wu HC et al (2011) EphrinB2 induces pelvic-urethra reflex potentiation via Src kinase-dependent tyrosine phosphorylation of NR2B. Am J Physiol Renal Physiol 300(2):F403–F411

    Article  CAS  Google Scholar 

  • Xian H et al (2020) CCL2-CCR2 axis potentiates NMDA receptor signaling to aggravate neuropathic pain induced by brachial plexus avulsion. Neuroscience 425:29–38

    Article  CAS  Google Scholar 

  • Xie JD et al (2017) Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord. Neuropharmacology 123:477–487

    Article  CAS  Google Scholar 

  • Xiong ZG et al (1998) Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol Pharmacol 54(6):1055–1063

    Article  CAS  Google Scholar 

  • Xu W, Harrison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385(6617):595–602

    Article  CAS  Google Scholar 

  • Xu JT et al (2006) The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain 123(3):306–321

    Article  CAS  Google Scholar 

  • Xu L et al (2012) Arcuate Src activation-induced phosphorylation of NR2B NMDA subunit contributes to inflammatory pain in rats. J Neurophysiol 108(11):3024–3033

    Article  CAS  Google Scholar 

  • Xu F et al (2017) Perturbing NR2B-PSD-95 interaction relieves neuropathic pain by inactivating CaMKII-CREB signaling. NeuroReport 28(13):856–863

    Article  CAS  Google Scholar 

  • Xu F et al (2018) Misaligned feeding may aggravate pain by disruption of sleep-awake rhythm. Anesth Analg 127(1):255–262

    Article  Google Scholar 

  • Xu J et al (2020) Nicotinamide adenine dinucleotide phosphate oxidase 2-derived reactive oxygen species contribute to long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high-frequency stimulus of the sciatic nerve. Pain 161(4):758–772

    Article  CAS  Google Scholar 

  • Yang M, Leonard JP (2001) Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. J Neurochem 77(2):580–588

    Article  CAS  Google Scholar 

  • Yang X et al (2009) Peripheral inflammation increased the synaptic expression of NMDA receptors in spinal dorsal horn. Pain 144(1–2):162–169

    Article  CAS  Google Scholar 

  • Yang HB et al (2011) cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. J Neurochem 116(1):93–104

    Article  CAS  Google Scholar 

  • Yang L et al (2014) Cdk5 inhibitor roscovitine alleviates neuropathic pain in the dorsal root ganglia by downregulating N-methyl-D-aspartate receptor subunit 2A. Neurol Sci 35(9):1365–1371

    Article  Google Scholar 

  • Yousuf MS et al (2020) Endoplasmic reticulum-mitochondria interplay in chronic pain: the calcium connection. Mol Pain 16:1744806920946889

    Article  CAS  Google Scholar 

  • Yu XM et al (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275(5300):674–678

    Article  CAS  Google Scholar 

  • Zafra F et al (2017) Glycine transporters and its coupling with NMDA receptors. Adv Neurobiol 16:55–83

    Article  Google Scholar 

  • Zhang X et al (2005) Protein phosphatase modulates the phosphorylation of spinal cord NMDA receptors in rats following intradermal injection of capsaicin. Brain Res Mol Brain Res 138(2):264–272

    Article  CAS  Google Scholar 

  • Zhang R et al (2012) Intrathecal administration of roscovitine attenuates cancer pain and inhibits the expression of NMDA receptor 2B subunit mRNA. Pharmacol Biochem Behav 102(1):139–145

    Article  CAS  Google Scholar 

  • Zhang HH et al (2014) The BDNF/TrkB signaling pathway is involved in heat hyperalgesia mediated by Cdk5 in rats. PLoS ONE 9(1):e85536

    Article  Google Scholar 

  • Zhang L et al (2021) Spinal NR2B phosphorylation at Tyr1472 regulates IRE(-)DMT1-mediated iron accumulation and spine morphogenesis via kalirin-7 in tibial fracture-associated postoperative pain after orthopedic surgery in female mice. Reg Anesth Pain Med 46(4):363–373

    Article  Google Scholar 

  • Zhong Y et al (2019) Crosstalk between Cdk5/p35 and ERK1/2 signalling mediates spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury. J Neurochem 151(2):166–184

    Article  CAS  Google Scholar 

  • Zhou X et al (2012) Bi-directional regulation of CaMKIIα phosphorylation at Thr286 by NMDA receptors in cultured cortical neurons. J Neurochem 122(2):295–307

    Article  CAS  Google Scholar 

  • Zhou YQ et al (2017) Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase II in chronic pain. J Pharmacol Exp Ther 363(2):176–183

    Article  CAS  Google Scholar 

  • Zhou XL et al (2019) ROR2 modulates neuropathic pain via phosphorylation of NMDA receptor subunit GluN2B in rats. Br J Anaesth 123(2):e239–e248

    Article  CAS  Google Scholar 

  • Zhu YB et al (2020) Activation of CaMKII and GluR1 by the PSD-95-GluN2B coupling-dependent phosphorylation of GluN2B in the spinal cord in a rat model of type-2 diabetic neuropathic pain. J Neuropathol Exp Neurol 79(7):800–808

    Article  CAS  Google Scholar 

  • Zou X et al (2020) Activation of voltage-gated sodium channels by BmK NT1 augments NMDA receptor function through Src family kinase signaling pathway in primary cerebellar granule cell cultures. Neuropharmacology 180:108291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all the researchers who make contributions to all the studies involved in this review, and everyone who offers helpful comments and revises to this work.

Funding

This work was supported by the National Natural Science Foundation of China under contract (Grant Nos. 82071250, 31672290), Advanced Interdisciplinary Program of College of Advanced Interdisciplinary Studies (Grant No. JC18-03), Innovation and entrepreneurship education reform research project of Central South University (Grant No. 2019CG052), Postgraduate Education Reform Project of Central South University (Grant No. 2021JGB105), Biochemistry Maker Space of Central South University (Grant No. 2015CK009).

Author information

Authors and Affiliations

Authors

Contributions

LP designed and wrote the manuscript, and prepared the figures and table. TL, RW, and WD wrote the manuscript and prepared the figure. MD designed and supervised the work.

Corresponding authors

Correspondence to Huangsheng Pu or Meichun Deng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Li, T., Wang, R. et al. Roles of Phosphorylation of N-Methyl-d-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 43, 155–175 (2023). https://doi.org/10.1007/s10571-022-01188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-022-01188-6

Keywords

Navigation