Skip to main content

Advertisement

Log in

Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis Via Improving Mitochondrial Dynamics in Early Brain Injury After Subarachnoid Hemorrhage

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is considered a crucial therapeutic target for early brain injury following subarachnoid hemorrhage (SAH). Emerging evidence indicates that docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various chronic diseases. This study aimed to investigate the neuroprotective effects of DHA on mitochondrial dynamic dysfunction after EBI using in vivo and in vitro approaches. For in vivo experiments, the rat endovascular perforation SAH model was performed, whereby DHA was administered intravenously 1 h after induction of SAH. Primary cultured neurons treated with oxyhemoglobin (OxyHb) for 24 h were used to mimic SAH in vitro. Our results demonstrated that DHA improved neurological deficits and reduced brain edema in rats with SAH, and attenuated OxyHb-induced neuronal death in primary cultured cells. DHA reduced the amount of reactive oxygen species-positive cells and improved cell viability when compared to the SAH + vehicle group in vitro. DHA attenuated malondialdehyde levels and superoxide dismutase stress, increased Bcl2 and Bcl-xl, and decreased Bax and cleaved caspase-3 in vivo. Additionally, DHA ameliorated mitochondrial dysfunction, upregulated the mitochondrial fusion-related protein Optic Atrophy 1, and downregulated the mitochondrial fission-related protein Dynamin-Related-Protein 1 (Drp1) and Serine 616 phosphorylated Drp1 after SAH both in vitro and in vivo. Taken together, our current study demonstrates that DHA might prevent oxidative stress-based apoptosis after SAH. The characterization of the underlying molecular mechanisms may further improve mitochondrial dynamics-related signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afshordel S, Hagl S, Werner D, Röhner N, Kögel D, Bazan NG, Eckert GP (2015) Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging—impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukot Essent Fatty Acids 92:23–31

    Article  PubMed  CAS  Google Scholar 

  • Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251

    Article  PubMed  CAS  Google Scholar 

  • Baburamani AA, Hurling C, Stolp H, Sobotka K, Gressens P, Hagberg H, Thornton C (2015) Mitochondrial optic atrophy (OPA) 1 processing is altered in response to neonatal hypoxic-ischemic brain injury. Int J Mol Sci 16:22509–22526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balog J, Mehta SL, Vemuganti R (2016) Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 36:2022–2033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159–166

    Article  PubMed  CAS  Google Scholar 

  • Bazan NG, Calandria JM, Gordon WC (2013) Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system. Nestle Nutr Inst Workshop Ser 77:121–131

    Article  PubMed  CAS  Google Scholar 

  • Bertholet AM et al (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19

    Article  PubMed  CAS  Google Scholar 

  • Burnside SW, Hardingham GE (2017) Transcriptional regulators of redox balance and other homeostatic processes with the potential to alter neurodegenerative disease trajectory. Biochem Soc Trans 45:1295–1303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai J, Cao S, Chen J, Yan F, Chen G, Dai Y (2015) Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett 600:238–243

    Article  PubMed  CAS  Google Scholar 

  • Chen S et al (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115:64–91

    Article  PubMed  Google Scholar 

  • Chen S, Wu H, Tang J, Zhang J, Zhang JH (2015) Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles. Acta Neurochir Suppl 120:39–46

    PubMed  PubMed Central  Google Scholar 

  • Connolly ES Jr et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 43:1711–1737

    Article  PubMed  Google Scholar 

  • Cui Y et al (2016) Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats. Mol Neurobiol 53:3646–3657

    Article  PubMed  CAS  Google Scholar 

  • Cui C, Song S, Cui J, Feng Y, Gao J, Jiang P (2017) Vitamin D receptor activation influences NADPH oxidase (NOX2) activity and protects against neurological deficits and apoptosis in a rat model of traumatic brain injury. Oxid Med Cell Longev. https://doi.org/10.1155/2017/9245702

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai J et al (2017) Changes in mitochondrial ultrastructure in SH-SY5Y cells during apoptosis induced by hemin. Neuroreport 28:551–554

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Zhang H, Zhang J, Yan M (2018) Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Biol Interact 284:32–40

    Article  PubMed  CAS  Google Scholar 

  • Echigo R et al (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan LF et al (2017) Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 112:336–349

    Article  PubMed  CAS  Google Scholar 

  • Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Gollihue JL, Patel SP, Rabchevsky AG (2018) Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regen Res 13:194–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Golpich M, Amini E, Mohamed Z, Azman Ali R, Ibrahim NM, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23:5–22

    Article  PubMed  Google Scholar 

  • Guo M et al (2018) Ketogenic diet improves brain ischemic tolerance and inhibits NLRP3 inflammasome activation by preventing Drp1-mediated mitochondrial fission and endoplasmic reticulum stress. Front Mol Neurosci 11:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2001) Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Sherchan P, Wang Y, Reis C, Applegate RL 2nd, Tang J, Zhang JH (2015) Phosphoinositide 3-kinase gamma contributes to neuroinflammation in a rat model of surgical brain injury. J Neurosci 35:10390–10401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L et al (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep 22:2066–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213:144–153

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Smith SB, Yoon Y (2017) The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem 292:7115–7130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Q et al (2016) Hemoglobin induced NO/cGMP suppression deteriorate microcirculation via pericyte phenotype transformation after subarachnoid hemorrhage in rats. Sci Rep 6:22070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Chen X, Zhang Y (2016) Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke. Am J Transl Res 8:3179–3187

    PubMed  PubMed Central  CAS  Google Scholar 

  • MacVicar TD, Lane JD (2014) Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. J Cell Sci 127:2313–2325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayurasakorn K et al (2016) DHA but not EPA emulsions preserve neurological and mitochondrial function after brain hypoxia-ischemia in neonatal mice. PLoS ONE 11:e0160870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meguro T, Chen B, Lancon J, Zhang JH (2001) Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J Neurochem 77:1128–1135

    Article  PubMed  CAS  Google Scholar 

  • Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  • Prasansuklab A, Meemon K, Sobhon P, Tencomnao T (2017) Ethanolic extract of Streblus asper leaves protects against glutamate-induced toxicity in HT22 hippocampal neuronal cells and extends lifespan of Caenorhabditis elegans. BMC Complement Altern Med 17:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Prentice H, Modi JP, Wu JY (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxid Med Cell Longev 2015:964518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P (2011) Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev 67:103–118

    Article  PubMed  CAS  Google Scholar 

  • Regmi SG, Rolland SG, Conradt B (2014) Age-dependent changes in mitochondiral morphology and volume are not predictors of lifespan. Aging 6:118–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Carrizalez AD et al (2014) Oxidants, antioxidants and mitochondrial function in non-proliferative diabetic retinopathy. J Diabetes 6:167–175

    Article  PubMed  CAS  Google Scholar 

  • Sharp WW et al (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28:316–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Z et al (2016) Enriched endogenous omega-3 polyunsaturated fatty acids protect cortical neurons from experimental ischemic injury. Mol Neurobiol 53:6482–6488

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167:327–334

    Article  PubMed  Google Scholar 

  • Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH (2010) Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol 68:650–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3:1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu P et al (2017) Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of Drp1-activated mitochondrial fission and oxidative stress. Neurochem Res 42:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Yin J et al (2016) Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway. Int J Biochem Cell Biol 75:11–22

    Article  PubMed  CAS  Google Scholar 

  • Zhang L et al (2014) Exercise pretreatment promotes mitochondrial dynamic protein OPA1 expression after cerebral ischemia in rats. Int J Mol Sci 15:4453–4463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Fundamental Research Funds for the Provincial Universities (2017LCZX30).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed contributed immensely to this study. TZ and PW performed the experiments, wrote the paper. YL, YL, and BL helped to perform the animal experiments. CW, LW, GZ, JD, SZ analyzed the data. HS, JHZ, and S X, as experts in neurology, provided technical supports and designed the research. Cesar Reis has proofread this manuscript.

Corresponding author

Correspondence to Huaizhang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 708 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wu, P., Zhang, J.H. et al. Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis Via Improving Mitochondrial Dynamics in Early Brain Injury After Subarachnoid Hemorrhage. Cell Mol Neurobiol 38, 1413–1423 (2018). https://doi.org/10.1007/s10571-018-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-018-0608-3

Keywords

Navigation