Baganz NL, Blakely RD (2013) A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 4:48–63. https://doi.org/10.1021/cn300186b
PubMed
CAS
Article
Google Scholar
Barthels C et al (2017) CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun 8:14715. https://doi.org/10.1038/ncomms14715
PubMed
PubMed Central
Article
Google Scholar
Beaumont E et al (2017) Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 313:H354-H367. https://doi.org/10.1152/ajpheart.00070.2017
PubMed
Article
PubMed Central
Google Scholar
Bedarf JR et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med 9:39. https://doi.org/10.1186/s13073-017-0428-y
PubMed
PubMed Central
CAS
Article
Google Scholar
Bieri G, Gitler AD, Brahic M (2017) Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2017.03.007
PubMed
Article
Google Scholar
Bodea LG et al (2014) Neurodegeneration by activation of the microglial complement-phagosome pathway. J Neurosci 34:8546–8556. https://doi.org/10.1523/JNEUROSCI.5002-13.2014
PubMed
CAS
Article
Google Scholar
Borodovitsyna O, Flamini M, Chandler D (2017) Noradrenergic modulation of cognition in health and disease. Neural Plast 2017:6031478 https://doi.org/10.1155/2017/6031478
PubMed
PubMed Central
CAS
Article
Google Scholar
Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF (2014) The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol 817:373–403. https://doi.org/10.1007/978-1-4939-0897-4_17
PubMed
CAS
Article
Google Scholar
Braak H, Del Tredici K (2017) Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Park Dis 7:S73–S87. https://doi.org/10.3233/JPD-179001
Article
Google Scholar
Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536. https://doi.org/10.1007/s00702-002-0808-2
PubMed
CAS
Article
Google Scholar
Caputi V et al (2017) Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol 174:3623–3639. https://doi.org/10.1111/bph.13965
PubMed
CAS
Article
PubMed Central
Google Scholar
Carreno FR, Frazer A (2017) Vagal nerve stimulation for treatment-resistant. Depress Neurother 14:716–727. https://doi.org/10.1007/s13311-017-0537-8
Article
Google Scholar
Coleman OI, Haller D (2017) Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Front Immunol 8:1927. https://doi.org/10.3389/fimmu.2017.01927
PubMed
Article
Google Scholar
De Biase D, Pennacchietti E (2012) Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 86:770–786. https://doi.org/10.1111/mmi.12020
PubMed
CAS
Article
Google Scholar
De Filippis R et al (2012) Expanding the phenotype associated with FOXG1 mutations and in vivo FoxG1 chromatin-binding dynamics. Clin Genet 82:395–403. https://doi.org/10.1111/j.1399-0004.2011.01810.x
PubMed
CAS
Article
Google Scholar
de Muinck EJ, Lundin KEA, Trosvik P (2017) Linking spatial structure and community-level biotic interactions through cooccurrence and time series modeling of the human intestinal microbiota. mSystems. https://doi.org/10.1128/mSystems.00086-17
PubMed
PubMed Central
Article
Google Scholar
Devos D et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007
PubMed
CAS
Article
Google Scholar
Diaz Heijtz R et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052. https://doi.org/10.1073/pnas.1010529108
PubMed
Article
Google Scholar
Dinan TG, Cryan JF (2017) Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology 42:178–192. https://doi.org/10.1038/npp.2016.103
PubMed
CAS
Article
Google Scholar
Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9. https://doi.org/10.1016/j.jpsychires.2015.02.021
PubMed
Article
Google Scholar
Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW (1999) Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 100:34–41
PubMed
CAS
Article
Google Scholar
Dworak M, Stebbing M, Kompa AR, Rana I, Krum H, Badoer E (2014) Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction. Auton Neurosci 185:43–50. https://doi.org/10.1016/j.autneu.2014.03.007
PubMed
CAS
Article
Google Scholar
Esmaili A et al (2009) Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology 137:2074–2083. https://doi.org/10.1053/j.gastro.2009.09.002
PubMed
PubMed Central
CAS
Article
Google Scholar
Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA (2017) Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson’s disease. Brain Stimul. https://doi.org/10.1016/j.brs.2017.08.008 [Epub ahead of print]
PubMed
Article
Google Scholar
Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114 (Pt 5):2283–2301
PubMed
Article
Google Scholar
Forsyth CB et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6:e28032. https://doi.org/10.1371/journal.pone.0028032
PubMed
PubMed Central
CAS
Article
Google Scholar
Frohlich EE et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155. https://doi.org/10.1016/j.bbi.2016.02.020
PubMed
PubMed Central
CAS
Article
Google Scholar
Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414. https://doi.org/10.1053/j.gastro.2006.11.002
PubMed
CAS
Article
Google Scholar
Giannoccaro MP, La Morgia C, Rizzo G, Carelli V (2017) Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Mov Disord 32:346–363. https://doi.org/10.1002/mds.26966
PubMed
Article
Google Scholar
Hoffman JM et al (2012) Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142:844–854 e844. https://doi.org/10.1053/j.gastro.2011.12.041
PubMed
PubMed Central
CAS
Article
Google Scholar
Hsiao EY (2013) Immune dysregulation in autism spectrum disorder. Int Rev Neurobiol 113:269–302. https://doi.org/10.1016/B978-0-12-418700-9.00009-5
PubMed
CAS
Article
Google Scholar
Humann J et al (2016) Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe 19:901. https://doi.org/10.1016/j.chom.2016.05.017
PubMed
CAS
Article
Google Scholar
Hyland NP, Cryan JF (2016) Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol 417:182–187. https://doi.org/10.1016/j.ydbio.2016.06.027
PubMed
CAS
Article
Google Scholar
Ivanov AI (2012) Structure and regulation of intestinal epithelial tight junctions: current concepts and unanswered questions. Adv Exp Med Biol 763:132–148
PubMed
CAS
Google Scholar
Jin Y, Kong J (2017) Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front Neurosci 10:609. https://doi.org/10.3389/fnins.2016.00609
PubMed
PubMed Central
Article
Google Scholar
Kang DW et al (2017) Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10. https://doi.org/10.1186/s40168-016-0225-7
PubMed
PubMed Central
Article
Google Scholar
Kelly CJ et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–671. https://doi.org/10.1016/j.chom.2015.03.005
PubMed
PubMed Central
CAS
Article
Google Scholar
Kelly JR et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019
PubMed
Article
Google Scholar
Kosikowska U, Biernasiuk A, Korona-Glowniak I, Kiciak S, Tomasiewicz K, Malm A (2016) The association of chronic hepatitis C with respiratory microbiota disturbance on the basis of decreased Haemophilus spp. colonization. Med Sci Monit 22:625–632
PubMed
PubMed Central
Article
Google Scholar
Kutchko KM, Siltberg-Liberles J (2013) Metazoan innovation: from aromatic amino acids to extracellular signaling. Amino Acids 45:359–367. https://doi.org/10.1007/s00726-013-1509-x
PubMed
PubMed Central
CAS
Article
Google Scholar
Lamberts JT, Hildebrandt EN, Brundin P (2015) Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson’s disease: a speculative synthesis. Neurobiol Dis 77:276–283. https://doi.org/10.1016/j.nbd.2014.07.002
PubMed
CAS
Article
Google Scholar
Lang AS, Beatty JT (2000) Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci USA 97:859–864
PubMed
CAS
Article
Google Scholar
Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH (2001) Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci 21:8447–8455
PubMed
CAS
Article
Google Scholar
Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P (2009) The second brain and Parkinson’s disease. Eur J Neurosci 30:735–741. https://doi.org/10.1111/j.1460-9568.2009.06873.x
PubMed
Article
Google Scholar
Li G, Young KD (2013) Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159:402–410. https://doi.org/10.1099/mic.0.064139-0
PubMed
CAS
Article
Google Scholar
Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, Tsai YC (2016) Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res 298:202–209. https://doi.org/10.1016/j.bbr.2015.10.046
PubMed
CAS
Article
Google Scholar
Lucas N, Hubain P, Loas G, Jurysta F (2017) Treatment resistant depression: actuality and perspectives in 2017. Rev Med Brux 38:16–25
PubMed
CAS
Google Scholar
Macedo D, Filho A, Soares de Sousa CN, Quevedo J, Barichello T, Junior HVN, Freitas de Lucena D (2017) Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord 208:22–32. https://doi.org/10.1016/j.jad.2016.09.012
PubMed
CAS
Article
Google Scholar
Main BS, Minter MR (2017) Microbial immuno-communication in neurodegenerative diseases. Front Neurosci 11:151. https://doi.org/10.3389/fnins.2017.00151
PubMed
PubMed Central
Article
Google Scholar
Malkki H (2017) Parkinson disease: could gut microbiota influence severity of Parkinson disease? Nat Rev Neurol 13:66–67. https://doi.org/10.1038/nrneurol.2016.195
PubMed
CAS
Article
Google Scholar
Manoharan I et al (2016) Homeostatic PPARα signaling limits inflammatory responses to commensal microbiota in the intestine. J Immunol 196:4739–4749. https://doi.org/10.4049/jimmunol.1501489
PubMed
PubMed Central
CAS
Article
Google Scholar
Mariani J et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism. Spectr Disord Cell 162:375–390. https://doi.org/10.1016/j.cell.2015.06.034
CAS
Article
Google Scholar
Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158:1049–1063. https://doi.org/10.1210/en.2016-1839
PubMed
Article
Google Scholar
Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10:473–486. https://doi.org/10.1038/nrgastro.2013.105
PubMed
PubMed Central
CAS
Article
Google Scholar
McWilliams TG, Muqit MM (2017) PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol 45:83–91. https://doi.org/10.1016/j.ceb.2017.03.013
PubMed
CAS
Article
Google Scholar
Mertsalmi TH, Aho VTE, Pereira PAB, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017) More than constipation—bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 24:1375–1383. https://doi.org/10.1111/ene.13398
PubMed
CAS
Article
Google Scholar
Mittal R et al (2017) Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol 232:2359–2372. https://doi.org/10.1002/jcp.25518
PubMed
PubMed Central
CAS
Article
Google Scholar
Moonen AJH, Wijers A, Dujardin K, Leentjens AFG (2017) Neurobiological correlates of emotional processing in Parkinson’s disease: a systematic review of experimental studies. J Psychosom Res 100:65–76. https://doi.org/10.1016/j.jpsychores.2017.07.009
PubMed
Article
Google Scholar
Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21:10609–10620. https://doi.org/10.3748/wjg.v21.i37.10609
PubMed
PubMed Central
CAS
Article
Google Scholar
Noble EE, Hsu TM, Kanoski SE (2017) Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci 11:9. https://doi.org/10.3389/fnbeh.2017.00009
PubMed
PubMed Central
CAS
Article
Google Scholar
Obata Y, Pachnis V (2016) The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151:836–844. https://doi.org/10.1053/j.gastro.2016.07.044
PubMed
PubMed Central
CAS
Article
Google Scholar
O’Leary OF et al (2018) The vagus nerve modulates BDNF expression and neurogenesis in the hippocampus. Eur Neuropsychopharmacol 28:307–316. https://doi.org/10.1016/j.euroneuro.2017.12.004
PubMed
CAS
Article
Google Scholar
O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027
PubMed
CAS
Article
Google Scholar
Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol 6:639. https://doi.org/10.3389/fimmu.2015.00639
PubMed
PubMed Central
CAS
Article
Google Scholar
Özoğul F (2004) Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur Food Res Technol 219:465–469
Article
Google Scholar
Persico AM, Napolioni V (2013) Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol 36:82–90. https://doi.org/10.1016/j.ntt.2012.09.002
PubMed
CAS
Article
Google Scholar
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995. https://doi.org/10.1016/j.clinthera.2015.04.002
PubMed
PubMed Central
CAS
Article
Google Scholar
Ray A, Dittel BN (2015) Interrelatedness between dysbiosis in the gut microbiota due to immunodeficiency and disease penetrance of colitis. Immunology 146:359–368. https://doi.org/10.1111/imm.12511
PubMed
PubMed Central
CAS
Article
Google Scholar
Reigstad CS et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403. https://doi.org/10.1096/fj.14-259598
PubMed
CAS
Article
Google Scholar
Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (2017) Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol 8:37. https://doi.org/10.3389/fneur.2017.00037
PubMed
PubMed Central
Article
Google Scholar
Rivard L, Srinivasan J, Stone A, Ochoa S, Sternberg PW, Loer CM (2010) A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. BMC Neurosci 11:22 https://doi.org/10.1186/1471-2202-11-22
PubMed
PubMed Central
CAS
Article
Google Scholar
Rolig AS et al (2017) The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol 15:e2000689. https://doi.org/10.1371/journal.pbio.2000689
PubMed
PubMed Central
CAS
Article
Google Scholar
Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health, vol XVI. Springer, New York, pp 17–52
Chapter
Google Scholar
Salloum NC, Gott BM, Conway CR (2017) Sustained remission in patients with treatment-resistant depression receiving vagal nerve stimulation: a case series. Brain Stimul 10:997–1000. https://doi.org/10.1016/j.brs.2017.06.001
PubMed
Article
Google Scholar
Scheperjans F et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069
PubMed
Article
Google Scholar
Shaw W (2016) Clostridia bacteria in the gastrointestinal tract as a major cause of depression and other neuropsychiatric disorders. In: Greenblatt J, Brogan K (eds) Integrative psychiatry for depression: redefining models for assessment, treatment, and prevention of mood disorders. Taylor and Francis, New York, pp 31–48
Google Scholar
Sherwin E, Rea K, Dinan TG, Cryan JF (2016) A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 32:96–102. https://doi.org/10.1097/MOG.0000000000000244
PubMed
CAS
Article
Google Scholar
Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV (2009) [Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12]. Prikl Biokhim Mikrobiol 45:550–554
PubMed
CAS
Google Scholar
Singh SK, Pal A (2015) Biophysical approaches to the study of LeuT, a prokaryotic homolog of neurotransmitter sodium symporters. Methods Enzymol 557:167–198. https://doi.org/10.1016/bs.mie.2015.01.002
PubMed
PubMed Central
CAS
Article
Google Scholar
Smith MR, Fernandes J, Go YM, Jones DP (2017) Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 482:388–398. https://doi.org/10.1016/j.bbrc.2016.10.126
PubMed
PubMed Central
CAS
Article
Google Scholar
Snyder C, Kream RM, Ptacek R, Stefano GB (2015) Mitochondria, microbiome and their potential psychiatric modulation. Autism Open Access 5:144. https://doi.org/10.4172/2165-7890.1000144
Article
Google Scholar
Sonetti D, Ottaviani E, Bianchi F, Rodriquez M, Stefano ML, Scharrer B, Stefano GB (1994) Microglia in invertebrate ganglia. Proc Natl Acad Sci USA 91:9180–9184
PubMed
CAS
Article
Google Scholar
Song Y, Liu C, Finegold SM (2004) Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 70:6459–6465. https://doi.org/10.1128/AEM.70.11.6459-6465.2004
PubMed
PubMed Central
CAS
Article
Google Scholar
Stefano GB (1986) Conformational matching: a possible evolutionary force in the evolvement of signal systems. In: Stefano GB (ed) CRC Handbook of comparative opioid and related neuropeptide mechanisms, vol 2. CRC Press Inc., Boca Raton, pp 271–277
Google Scholar
Stefano GB, Kream RM (2007) Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (review). Int J Mol Med 20:837–841
PubMed
CAS
Google Scholar
Stefano GB, Kream RM (2010) Dopamine, morphine, and nitric oxide: an evolutionary signaling triad CNS. Neurosci Ther 16:e124–e137. https://doi.org/10.1111/j.1755-5949.2009.00114.x
CAS
Article
Google Scholar
Stefano GB, Kream R (2015a) Psychiatric disorders involving mitochondrial processes. Psychol Obs 1:1–6
Google Scholar
Stefano GB, Kream R (2015b) Evolutionary perspective on microglial/neuronal coupling with special relevance to psychiatric illnesses. J Psychiatr 18:329. https://doi.org/10.4172/2378-5756.1000329
Article
Google Scholar
Stefano GB, Kream RM (2016) Mitochondrial DNA heteroplasmy in human health and disease. Biomed Rep 4:259–262. https://doi.org/10.3892/br.2016.590
PubMed
PubMed Central
CAS
Article
Google Scholar
Stefano GB, Catapane EJ, Aiello E (1976) Dopaminergic agents: influence on serotonin in the molluscan nervous system. Science 194:539–541
PubMed
CAS
Article
Google Scholar
Stefano GB, Bilfinger TV, Fricchione GL (1994) The immune neuro-link and the macrophage: Postcardiotomy delirium. HIV-associated dementia psychiatry. Prog Neurobiol 42:475–488
PubMed
CAS
Article
Google Scholar
Stefano GB, Samuel J, Kream RM (2017) Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med Sci Monit 23:101–106
PubMed
PubMed Central
CAS
Article
Google Scholar
Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X (2015) An excitatory synapse hypothesis of depression. Trends Neurosci 38:279–294. https://doi.org/10.1016/j.tins.2015.03.003
PubMed
PubMed Central
CAS
Article
Google Scholar
Tobe EH (2013) Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat 9:567–573. https://doi.org/10.2147/NDT.S44282
PubMed
PubMed Central
Article
Google Scholar
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81:369–382. https://doi.org/10.1002/ana.24901
PubMed
Article
Google Scholar
Tulstrup MV et al (2015) Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS One 10:e0144854. https://doi.org/10.1371/journal.pone.0144854
PubMed
PubMed Central
CAS
Article
Google Scholar
Unger MM et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019
PubMed
Article
Google Scholar
Verheijden S, De Schepper S, Boeckxstaens GE (2015) Neuron-macrophage crosstalk in the intestine: a “microglia” perspective. Front Cell Neurosci 9:403. https://doi.org/10.3389/fncel.2015.00403
PubMed
PubMed Central
CAS
Article
Google Scholar
Vermeiren Y, De Deyn PP (2017) Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: the locus coeruleus story. Neurochem Int 102:22–32. https://doi.org/10.1016/j.neuint.2016.11.009
PubMed
CAS
Article
Google Scholar
Villaran RF et al (2010) Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson’s disease. J Neurochem 114:1687–1700. https://doi.org/10.1111/j.1471-4159.2010.06879.x
PubMed
CAS
Article
Google Scholar
Wallace CJ, Milev R (2017a) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatr 16:14. https://doi.org/10.1186/s12991-017-0138-2
Article
Google Scholar
Wallace CJ, Milev R (2017b) Erratum to: the effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatr 16:18. https://doi.org/10.1186/s12991-017-0141-7
Article
Google Scholar
Wells JM et al (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 312:G171–G193. https://doi.org/10.1152/ajpgi.00048.2015
PubMed
Article
Google Scholar
Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44. https://doi.org/10.1016/j.bbadis.2009.08.013
PubMed
CAS
Article
Google Scholar
Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344
PubMed
PubMed Central
CAS
Article
Google Scholar
Wu GD, Bushmanc FD, Lewis JD (2013) Diet, the human gut microbiota and IBD. Anaerobe 24:117–120. https://doi.org/10.1016/j.anaerobe.2013.03.011
PubMed
CAS
Article
Google Scholar
Yakunina N, Kim SS, Nam EC (2017) Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20:290–300. https://doi.org/10.1111/ner.12541
PubMed
Article
Google Scholar
Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl− dependent neurotransmitter transporters. Nature 437:215–223. https://doi.org/10.1038/nature03978
PubMed
CAS
Article
Google Scholar
Yano JM et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047
PubMed
PubMed Central
CAS
Article
Google Scholar
Yoo BB, Mazmanian SK (2017) The enteric network: interactions between the immune and nervous systems of the Gut. Immunity 46:910–926. https://doi.org/10.1016/j.immuni.2017.05.011
PubMed
PubMed Central
CAS
Article
Google Scholar
Zheng P et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatr 21:786–796. https://doi.org/10.1038/mp.2016.44
CAS
Article
Google Scholar
Zhou L, Foster JA (2015) Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 11:715–723. https://doi.org/10.2147/NDT.S61997
PubMed
PubMed Central
CAS
Article
Google Scholar