Skip to main content
Log in

Altered Ethanol Consumption in Osteocalcin Null Mutant Mice

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Osteocalcin (OC) is an abundant extracellular calcium-binding protein synthesized by osteoblasts. Although most OC is bound to hydroxyapatite mineral during bone formation, a consistent amount is released directly to circulation. Plasma OC (pOC) levels are highly sensitive to stressful stimuli that alter stress-responsive hormones, such as glucocorticoids (cortisol or corticosterone) and the catecholamines norepinephrine and epinephrine. To gain a better understanding of the apparent relationship of OC to the effects of ethanol (EtOH) and the stress responses, we compared mice that have OC (WT [OC+/+] and HET [OC+/−]) with OC null mutants (KO [OC/−]), which have no OC in either plasma or in bone. One experiment included chronic unpredictable stress, a second was conducted in the absence of any known stressors other than EtOH, while a third imposed a more severe acute immobilization stress in addition to EtOH consumption. The data obtained confirmed significant differences in EtOH consumption in mice that previously experienced various stressful stimuli. We also determined that adrenal tyrosine-hydroxylase expression was inversely proportional to EtOH consumption and tended to be lower in KO than in WT. Data suggest that OC possesses the ability to modulate the adrenal gene expression of the catecholamine synthetic pathway. This modulation may be responsible for differences in EtOH consumption under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anthenelli RM (2012) Overview: stress and alcohol use disorders revisited. Alcohol Res 34(4):386–390

    PubMed  PubMed Central  Google Scholar 

  • Beresford JN, Gallagher JA, Poser JW, Russell RG (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab Bone Dis Relat Res 5(5):229–234

    Article  Google Scholar 

  • Dai X, Thavundayil J, Gianoulakis C (2002) Response of the hypothalamic-pituitary-adrenal axis to stress in the absence and presence of ethanol in subjects at high and low risk of alcoholism. Neuropsychopharmacology 27(3):442–452

    Article  CAS  PubMed  Google Scholar 

  • Dallman MF, Akana SF, Bell ME, Bhatnagar S, Choi S, Chu A, Gomez F, Laugero K, Soriano L, Viau V (1999) Warning! Nearby construction can profoundly affect your experiments. Endocrine 11(2):111–113

    Article  CAS  PubMed  Google Scholar 

  • Desbois C, Hogue DA, Karsenty G (1994) The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 269(2):1183–1190

    CAS  PubMed  Google Scholar 

  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452

    Article  CAS  PubMed  Google Scholar 

  • Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105(13):5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaddini GW, Turner RT, Grant KA, Iwaniec UT (2016) Alcohol: a simple nutrient with complex actions on bone in the adult skeleton. Alcohol Clin Exp Res 40(4):657–671

    Article  PubMed  PubMed Central  Google Scholar 

  • Gundberg CM, Clough ME, Carpenter TO (1992) Development and validation of a radioimmunoassay for mouse osteocalcin: paradoxical response in the Hyp mouse. Endocrinology 130(4):1909–1915

    CAS  PubMed  Google Scholar 

  • Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69(3):990–1047

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Jin HW, Fujita M, Nagaoka N, Sugimoto T (2005) Osteocalcin-immunoreactive neurons in the vagal and glossopharyngeal sensory ganglia of the rat. Brain Res 1031(1):129–133

    Article  CAS  PubMed  Google Scholar 

  • Keyes KM, Hatzenbuehler ML, Grant BF, Hasin DS (2012) Stress and alcohol: epidemiologic evidence. Alcohol Res 34(4):391–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RF (1997) Alcohol-induced bone disease: impact of ethanol on osteoblast proliferation. Alcohol Clin Exp Res 21(3):392–399

    CAS  PubMed  Google Scholar 

  • Klein RF, Fausti KA, Carlos AS (1996) Ethanol inhibits human osteoblastic cell proliferation. Alcohol Clin Exp Res 20(3):572–578

    Article  CAS  PubMed  Google Scholar 

  • Kubovcakova L, Sabban EL, Kvetnansky R, Krizanova O (2002) Comparative study of catecholamine synthesizing enzymes in adrenal medulla of CRH knock-out mice, their CRH (+/+) mates and Sprague-Dawley rats. Endocr Regul 36(3):107–113

    CAS  PubMed  Google Scholar 

  • Kvetnansky R (2004) Stressor specificity and effect of prior experience on catecholamine biosynthetic enzyme phenylethanolamine N-methyltransferase. Ann N Y Acad Sci 1032:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang H, Yang C, Li Y, Dai Z (2016) An overview of osteocalcin progress. J Bone Miner Metab 34(4):367–379

    Article  CAS  PubMed  Google Scholar 

  • Lopez MF, Doremus-Fitzwater TL, Becker HC (2011) Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol 45(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Lopez MF, Anderson RI, Becker HC (2016) Effect of different stressors on voluntary ethanol intake in ethanol-dependent and nondependent C57BL/6J mice. Alcohol 51:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrone JA, Maddalozzo GF, Branscum AJ, Hardin K, Cialdella-Kam L, Philbrick KA, Breggia AC, Rosen CJ, Turner RT, Iwaniec UT (2012) Moderate alcohol intake lowers biochemical markers of bone turnover in postmenopausal women. Menopause 19(9):974–979

    PubMed  Google Scholar 

  • Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012) Cortical bone is more sensitive to alcohol dose effects than trabecular bone in the rat. Joint Bone Spine 79(5):492–499

    Article  CAS  PubMed  Google Scholar 

  • McBride EA (2017) Small prey species’ behaviour and welfare: implications for veterinary professionals. J Small Anim Pract 58(8):423–436

    Article  PubMed  Google Scholar 

  • McCaul ME, Hutton HE, Stephens MA, Xu X, Wand GS (2017) Anxiety, anxiety sensitivity, and perceived stress as predictors of recent drinking, alcohol craving, and social stress response in heavy drinkers. Alcoholism 41(4):836–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikosch P (2014) Alcohol and bone. Wien Med Wochenschr 164(1–2):15–24

    Article  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Yadid G, Kvetnansky R, Kopin IJ, Goldstein DS (1998) Heterogeneous neurochemical responses to different stressors: a test of Selye’s doctrine of nonspecificity. Am J Physiol 275(4 Pt 2):R1247–R1255

    CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Kvetnansky R, Fukuhara K, Cizza G, Cann C (1995) Regulation of plasma osteocalcin by corticosterone and norepinephrine during restraint stress. Bone 17(5):467–472

    Article  CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Rusnak M, Fukuhara K, Kvetnansky R (2001) Repeated immobilization stress reduces rat vertebral bone growth and osteocalcin. Am J Physiol Regul Integr Comp Physiol 280(1):R79–R86

    Article  CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Blakley G, Kubovcakova L, Krizanova O, Pohorecky LA, Kvetnansky R (2004) Alcohol alters rat adrenomedullary function and stress response. Ann N Y Acad Sci 1018:173–182

    Article  CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Kubovcakova L, Krizanova O, Pohorecky LA, Kvetnansky R (2005) Ethanol consumption increases rat stress hormones and adrenomedullary gene expression. Alcohol 37(3):157–166

    Article  CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Pohorecky LA, Kvetnansky R (2007) Differing effects of acute and chronic stressors on plasma osteocalcin and leptin in rats. Stress 10(2):163–172

    Article  CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Pohorecky LA, Kubovcakova L, Krizanova O, Martin RB, Martinez DA, Kvetnansky R (2008) Ethanol and stress activate catecholamine synthesis in the adrenal: effects on bone. Ann N Y Acad Sci 1148:542–551

    Article  CAS  PubMed  Google Scholar 

  • Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M, Shah A, Franz C, Benjamin DE, Pohorecky LA (2012) Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol 32(5):879–889

    Article  CAS  PubMed  Google Scholar 

  • Peng TC, Lian JB, Hirsch PF, Kusy RP (1991) Lower serum osteocalcin in ethanol-fed rats. J Bone Miner Res 6(2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Pohorecky LA (1981) The interaction of alcohol and stress. A review. Neurosci Biobehav Rev 5(2):209–229

    Article  CAS  PubMed  Google Scholar 

  • Pohorecky LA (1990) Interaction of ethanol and stress: research with experimental animals—an update. Alcohol Alcohol 25(2–3):263–276

    Article  CAS  PubMed  Google Scholar 

  • Pohorecky LA (1991) Stress and alcohol interaction: an update of human research. Alcohol Clin Exp Res 15(3):438–459

    Article  CAS  PubMed  Google Scholar 

  • Pohorecky LA, Rassi E, Weiss JM, Michalak V (1980) Biochemical evidence for an interaction of ethanol and stress: preliminary studies. Alcohol Clin Exp Res 4(4):423–426

    Article  CAS  PubMed  Google Scholar 

  • Roske I, Baeger I, Frenzel R, Oehme P (1994) Does a relationship exist between the quality of stress and the motivation to ingest alcohol? Alcohol 11(2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Robinson J, O’Malley S (1998) Stress response dampening: effects of gender and family history of alcoholism and anxiety disorders. Psychopharmacology 137(4):311–320

    Article  CAS  PubMed  Google Scholar 

  • Vogel WH, DeTurck K, Miller JM (1986) Differential effects of ethanol on plasma catecholamine levels in rats. Biochem Pharmacol 35(22):3983–3987

    Article  CAS  PubMed  Google Scholar 

  • Wezeman FH, Emanuele MA, Emanuele NV, Moskal SF 2nd, Woods M, Suri M, Steiner J, LaPaglia N (1999) Chronic alcohol consumption during male rat adolescence impairs skeletal development through effects on osteoblast gene expression, bone mineral density, and bone strength. Alcohol Clin Exp Res 23(9):1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang S, Rice KC, Munro CA, Wand GS (2008) Restraint stress and ethanol consumption in two mouse strains. Alcohol Clin Exp Res 32(5):840–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Richard Kvetnansky for all his advice, encouragement, and friendship. Without his assistance and that of his laboratory staff, this work would not have been possible. This work was supported by grants from the National Science Foundation, SGER #0343515 and the National Institute on Alcohol Abuse and Alcoholism R21 AA 14399-01A2 (PP-B), and by funds from the Aresty Foundation for Undergraduate Research to MS and AS in partial fulfillment of requirements for Henry Rutgers Scholar awards to each.

Author information

Authors and Affiliations

Authors

Contributions

PP-B designed the experiments, prepared and wrote the manuscript. MS and AS performed all experiments, collected and analyzed data, and assisted in preparation of manuscript. LAP advised on experimental design and interpretation of manuscript.

Corresponding author

Correspondence to Patricia Patterson-Buckendahl.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research Involving Animal Rights

All protocols were reviewed and approved by the Rutgers Institutional Animal Care and Use Committee and were consistent with guidelines specified by the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson-Buckendahl, P., Shahid, M., Shah, A. et al. Altered Ethanol Consumption in Osteocalcin Null Mutant Mice. Cell Mol Neurobiol 38, 261–271 (2018). https://doi.org/10.1007/s10571-017-0539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0539-4

Keywords

Navigation