Skip to main content
Log in

Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABAB1, GABAB2, GABAA1, and GABAA3 were ubiquitously expressed both on gene and protein level. GABAA2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABAB1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABAB2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamik J, Wang KZ, Unlu S, Su AJ, Tannahill GM, Galson DL, O’Neill LA, Auron PE (2013) Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PLoS One 8:e70622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhashimi N, Frithiof L, Brudvik P, Bakhiet M (2001) Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofac Orthop 119:307–312

    Article  CAS  Google Scholar 

  • Auteri M, Zizzo MG, Serio R (2015) GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res 93:11–21

    Article  CAS  PubMed  Google Scholar 

  • Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B (2015) GABAergic signalling in the immune system. Acta Physiol (Oxf). 213:819–827

    Article  CAS  PubMed  Google Scholar 

  • Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110:533–543

    Article  CAS  PubMed  Google Scholar 

  • Buddhala C, Hsu CC, Wu JY (2009) A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int 55:9–12

    Article  CAS  PubMed  Google Scholar 

  • Deschner J, Rath-Deschner B, Reimann S, Bourauel C, Götz W, Jepsen S, Jäger A (2007) Regulatory effects of biophysical strain on rat TMJ discs. Ann Anat 189:326–328

    Article  PubMed  Google Scholar 

  • Dudic A, Kiliaridis S, Mombelli A, Giannopoulou C (2006) Composition changes in gingival crevicular fluid during orthodontic tooth movement: comparisons between tension and compression sides. Eur J Oral Sci 114:416–422

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Pacheco R, Lluis C, Ahern GP, O’Connell PJ (2007) The emergence of neurotransmitters as immune modulators. Trends Immunol 28:400–407

    Article  CAS  PubMed  Google Scholar 

  • Fujihara C, Yamada S, Ozaki N, Takeshita N, Kawaki H, Takano-Yamamoto T, Murakami S (2010) Role of mechanical stress-induced glutamate signaling-associated molecules in cytodifferentiation of periodontal ligament cells. J Biol Chem 285:28286–28297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinke SA (2007) Finding GAD: early detection of beta-cell injury. Endocrinology 148:4568–4571

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS (2009) Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4:809–821

    Article  PubMed  Google Scholar 

  • Jäger A, Kunert D, Friesen T, Zhang D, Lossdörfer S, Götz W (2008) Cellular and extracellular factors in early root resorption repair in the rat. Eur J Orthod 30:336–345

    Article  PubMed  Google Scholar 

  • Jin Z, Mendu SK, Birnir B (2013) GABA is an effective immunomodulatory molecule. Amino Acids 45:87–94

    Article  CAS  PubMed  Google Scholar 

  • Kaku M, Komatsu Y, Mochida Y, Yamauchi M, Mishina Y, Ko CC (2012) Identification and characterization of neural crest-derived cells in adult periodontal ligament of mice. Arch Oral Biol 57:1668–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Kondo H, Miyazawa K, Goto S, Togari A (2013) Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling. Bone 52:39–47

    Article  CAS  PubMed  Google Scholar 

  • Konermann A, Götz W, Wohlleber D, Knolle P, Deschner J, Jäger A (2012a) Osteoimmunological mechanisms involved in orthodontically and bacterially induced periodontal stress. J Orofac Orthop 73:430–439

    Article  CAS  PubMed  Google Scholar 

  • Konermann A, Stabenow D, Knolle PA, Held SA, Deschner J, Jäger A (2012b) Regulatory role of periodontal ligament fibroblasts for innate immune cell function and differentiation. Innate Immun 18:745–752

    Article  PubMed  Google Scholar 

  • Konermann A, Beyer M, Deschner J, Allam JP, Novak N, Winter J, Jepsen S, Jäger A (2012c) Human periodontal ligament cells facilitate leukocyte recruitment and are influenced in their immunomodulatory function by Th17 cytokine release. Cell Immunol 272:137–143

    Article  CAS  PubMed  Google Scholar 

  • Konermann A, Deschner J, Allam JP, Novak N, Winter J, Baader SL, Jepsen S, Jäger A (2012d) Antigen-presenting cell marker expression and phagocytotic activity in periodontal ligament cells. J Oral Pathol Med 41:340–347

    Article  CAS  PubMed  Google Scholar 

  • Kook SH, Jang YS, Lee JC (2011) Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells. J Cell Biochem 112:2891–2901

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 129:469.e1–469.e32

    Article  Google Scholar 

  • Möhler H, Benke D, Fritschy JM (2001) GABA(B)-receptor isoforms molecular architecture and distribution. Life Sci 68:2297–2300

    Article  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev 60:243–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton AJ, Genever PG, Birch MA, Suva LJ, Skerry TM (1998) Expression of an N-methyl-D-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 22:645–649

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Vissink A (2008) Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 116:89–97

    Article  CAS  PubMed  Google Scholar 

  • Reyes-García MG, Hernández-Hernández F, Hernández-Téllez B, García-Tamayo F (2007) GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol 188:64–68

    Article  PubMed  Google Scholar 

  • Saito M, Saito S, Ngan PW, Shanfeld J, Davidovitch Z (1991) Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofac Orthop 99:226–240

    Article  CAS  Google Scholar 

  • Sanders RD, Grover V, Goulding J, Godlee A, Gurney S, Snelgrove R, Ma D, Singh S, Maze M, Hussell T (2015) Immune cell expression of GABAA receptors and the effects of diazepam on influenza infection. J Neuroimmunol 282:97–103

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Dang HN, Yong J, Chui WS, Dizon MP, Yaw CK, Kaufman DL (2011) Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS One 6:e25338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Dang H, Nguyen AV, Chen Z, Kaufman DL (2014) Combined therapy with GABA and proinsulin/alum acts synergistically to restore long-term normoglycemia by modulating T-cell autoimmunity and promoting β-cell replication in newly diabetic NOD mice. Diabetes 63:3128–3134

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldrop MA, Suckow AT, Marcovina SM, Chessler SD (2007) Release of glutamate decarboxylase-65 into the circulation by injured pancreatic islet beta-cells. Endocrinology 148:4572–4578

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. Nguyen and D. Stephens from the Forsyth Institute as much as I. Bay-Müler K. Reifenrath and S. van Dyk from the Department of Orthodontics, University of Bonn for technical support. This research received Grant Support by the Deutsche Gesellschaft für Kieferorthopädie (DGKFO) and NIH/NIDCR Grant DE020906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Konermann.

Ethics declarations

Conflict of interest

All authors disclose any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konermann, A., Kantarci, A., Wilbert, S. et al. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro. Cell Mol Neurobiol 36, 1353–1363 (2016). https://doi.org/10.1007/s10571-016-0335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0335-6

Keywords

Navigation