Skip to main content

Oxidative Stress in Patients with X-Linked Adrenoleukodystrophy

Abstract

X-linked adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disorder that is characterized by progressive demyelination of the white matter, adrenal insufficiency, and accumulation of very long-chain fatty acids in body fluid and tissues. This disorder is clinically heterogeneous with seven different phenotypes in male patients and five phenotypes in female carriers. An ultimate treatment for X-ALD is not available. Depending on the rate of the disease progression and the degree of an individual handicap, special needs and challenges vary greatly. The exact mechanisms underlying the pathophysiology of this multifactorial neurodegenerative disorder remains obscure. Previous studies has been related oxidative stress with the pathogenesis of several disease that affecting the central nervous system, such as neurodegenerative disease, epilepsy, multiple sclerosis, Alzheimer, and Parkinson diseases. In addition, oxidative damage has been observed in various in vivo and in vitro studies with inborn errors of metabolism, including X-ALD. In this context, this review is focused on oxidative stress in X-ALD, with emphasis on studies using biological samples from patients affected by this disease.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

AASA:

Aminoadipic semialdehyde

ABCD1:

ATP-binding cassette (ABC) transporter subfamily D member 1

ABAP:

2,2′-Azo-bis-(2-aminidinopropane)

AMN:

Adrenomyeloneuropathy

ATP:

Adenosine triphosfate

BMT:

Bone marrow transplant

C22:0:

Docosanoic acid

C24:0:

Tetracosanoic acid

C26:0:

Hexacosanoic acid

Ca2+ :

Calcium

CAT:

Catalase

CCER:

Cerebral childhood ALD

CEL:

Carboxyethyl-lysine

CML:

Carboxylmethyl-lysine

CNS:

Central nervous system

DNA:

Deoxyribonucleic acid

GPx:

Glutathione peroxidase

GSA:

Glutamic semialdehyde

GSH:

Glutathione

GSHRd:

Glutathione reductase

GSSG:

Oxidized glutathione

H2DCFDA:

6-Carboxy 2′,7′-dichlorodihydrofluorescein

H2O2 :

Hydrogen peroxide

HNE:

4-Hydroxynonenal

HO-1:

Hemoxygenase-1

HPLC:

High-performance liquid chromatography

HSCT:

Hematopoietic stem cell transplantation

HTZ:

Heterozygote or female carriers

IEM:

Inborn errors of metabolism

IFN-γ:

Interferon gamma

IL-12:

Interleukin 12

IL-1β:

Interleukin 1 beta

iNOS:

Inducible nitric oxide synthase

LA:

Lipoic acid

LDL:

Low-density lipoprotein

LO:

Lorenzo’s oil

MDA:

Malondialdehyde

MDAL:

Malondialdehyde–lysine

MnSOD:

Manganese–superoxide dismutase

MRI:

Magnetic resonance image

mtDNA:

Mitochondrial DNA

NAC:

N-acetyl-cystein

NaPA:

Sodium phenylacetate

NO:

Oxide nitric

O2 :

Oxygen

O •−2 :

Superoxide radical

OH :

Hydroxyl radical

ONOO :

Peroxynitrite

OXPHOS:

Oxidative phosphorylation

PlsEtn:

Plasmenylethanolamine

PUFA:

Polyunsaturated fatty acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RS:

Reactive species

SOD:

Superoxide dismutase

TAR:

Total antioxidant reactivity

TAS:

Total antioxidant status

TBA-RS:

Thiobarbituric acid reactive species

TNF-α:

Tumor necrosis factor alpha

TRAP:

Total radical-trapping antioxidant potential

VLCFA:

Very long chain fatty acidy

VPA:

Valproic acid

X-ALD:

X-linked adrenoleukodystrophy

References

  • Aksenov M, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    CAS  Article  PubMed  Google Scholar 

  • Autrup H, Daneshvar B, Dragsted LO et al (1999) Biomarkers for exposure to ambient air pollution–comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environ Health Perspect 107(3):233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. doi:10.1155/2014/360438

    Article  PubMed  PubMed Central  Google Scholar 

  • Barschak AG, Sitta A, Deon M et al (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286

    CAS  Article  PubMed  Google Scholar 

  • Berger J, Gärtner J (2006) X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetics aspects. Biochim Biophys Acta 1763:1721–1732

    CAS  Article  PubMed  Google Scholar 

  • Berger J, Pujol A, Aubourg P, Forss-Petter S (2010) Current and future pharmacological treatment strategies in X-linked adrenoleukodystrophy. Brain Pathol 20:845–856

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Berger J, Forss-Petter S, Eichler FS (2014) Pathophysiology of X-linked adrenoleukodystrophy. Biochimie 98:135–142

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bezman L, Moser AB, Raymond GV et al (2001) Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol 49:512–517

    CAS  Article  PubMed  Google Scholar 

  • Boyd-Kimball D, Castegna A, Sultana R et al (2005) Proteomic identification of proteins oxidized by Abeta (1–42) in synaptosomes: implications for Alzheimer’s disease. Brain Res 1044:206–215

    CAS  Article  PubMed  Google Scholar 

  • Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822(9):1442–1452

    CAS  Article  PubMed  Google Scholar 

  • Brose RD, Avramopoulos D, Smith KD (2012) SOD2 as a potential modifier of X-linked adrenoleukodystrophy clinical phenotypes. J Neurol 259:1440–1447

    Article  PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    CAS  Article  PubMed  Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair and replacement systems. IUBMB Life 50(4–5):279–289

    CAS  Article  PubMed  Google Scholar 

  • Deon M, Wajner M, Sirtori LR et al (2006) The effect of Lorenzo’s oil on oxidative stress in X-linked adrenoleukodistrophy. J Neurol Sci 247:157–164

    CAS  Article  PubMed  Google Scholar 

  • Deon M, Sitta A, Barschak AG et al (2007) Introduction of lipid peroxidation and decrease of antioxidant defenses in symptomatic and asymptomatic patients with X-linked adrenoleukodystrophy. Int J Dev Neurosci 25:441–444

    CAS  Article  PubMed  Google Scholar 

  • Deon M, Sitta A, Barschak AG et al (2008) Oxidative stress is induced in female carriers of X-linked adrenoleukodystrophy. J Neurol Sci 266:79–83

    CAS  Article  PubMed  Google Scholar 

  • Di Biase A, Salvati S, Varí R et al (2000) Susceptibility to oxidation of plasma low-density lipoprotein in X-linked adrenoleukodystrophy: effects of simvastatin treatment. Mol Genet Metab 71(4):651–655

    Article  PubMed  Google Scholar 

  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32(11):1102–1115

    CAS  Article  PubMed  Google Scholar 

  • Engelen M, Kemp S, de Visser M et al (2012) X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 7:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18(10):872–879

    CAS  Article  PubMed  Google Scholar 

  • Fourcade S, López-Erauskin J, Galino J et al (2008) Early oxidative damage underlying neurodegenaration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773

    CAS  Article  PubMed  Google Scholar 

  • Fourcade S, Ruiz M, Guilera C et al (2010) Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum Mol Genet 19:2005–2014

    CAS  Article  PubMed  Google Scholar 

  • Fourcade S, López-Erauskin J, Ruiz M et al (2014) Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy. Biochimie 98:143–149

    CAS  Article  PubMed  Google Scholar 

  • Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen. Ann N Y Acad Sci 893:13–18

    CAS  Article  PubMed  Google Scholar 

  • Galea E, Launay N, Portero-Otin M et al (2012) Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? Biochim Biophys Acta 1822:1475–1488

    CAS  Article  PubMed  Google Scholar 

  • Gilg GA, Singh AK, Singh I (2000) Inducible nitric oxide synthase in the central nervous system of patients with X-adrenoleukodystrophy. J Neuropathol Exp Neurol 59(12):1063–1069

    CAS  Article  PubMed  Google Scholar 

  • Gorgas K, Teigler A, Komljenovic D, Just WW (2006) The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta 1763(12):1511–1526

    CAS  Article  PubMed  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause or consequence? Lancet 344:721–724

    CAS  Article  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Kampa M, Nistikaki A, Tsaousis V, Maliaraki N, Notas G, Castanas E (2002) A new automated method for the determination of the total antioxidant capacity (TAC) of human plasma, based on the crocin bleaching assay. BMC Clin Pathol 2(1):1–16

    Article  Google Scholar 

  • Kemp S, Wanders RJA (2010) Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol 20(4):831–837

    CAS  Article  PubMed  Google Scholar 

  • Kemp S, Berger J, Aubourg P (2012) X-linked adrenoleukodystrophy: clinical, metabolic, genetic andpathophysiological aspects. Biochim Biophys Acta 1822:1465–1474

    CAS  Article  PubMed  Google Scholar 

  • Khan M, Pahan K, Singh AK, Singh I (1998) Cytokine-induced accumulation of very long-chain fatty acids in rat C6 glial cells: implication for X-adrenoleukodystrophy. J Neurochem 71(1):78–87

    CAS  Article  PubMed  Google Scholar 

  • Khan M, Singh J, Singh I (2008) Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. J Neurochem 106(4):1766–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kühn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 33(2):154–172

    Article  PubMed  Google Scholar 

  • Latorre E, Collado MP, Fernández I, Aragonés MD, Catalán RE (2003) Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur J Biochem 270(1):36–46

    CAS  Article  PubMed  Google Scholar 

  • Lee H-C, Wei Y-H (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834

    CAS  Article  PubMed  Google Scholar 

  • Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36(9):1495–1502

    CAS  Article  PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    CAS  Article  PubMed  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, Del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Rad Biol Med 18:153–158

    CAS  Article  PubMed  Google Scholar 

  • López-Erauskin J, Fourcade S, Galino J et al (2011) Antioxidants halt axonal neurodegeneration in a mouse model of X-adrenoleukopystrophy. Ann Neurol 70:84–92

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Erauskin J, Galino J, Bianchi P, Fourcade S et al (2012) Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain 135(Pt12):3584–3598

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Erauskin J, Galino J, Ruiz M et al (2013) Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet 22(16):3296–3305

    Article  PubMed  Google Scholar 

  • Maier EM, Kammerer S, Muntau AC, Wichers M, Braun A, Roscher AA (2002) Symptoms in carriers of Adrenoleukodystrophy relate to skewed X inactivation. Ann Neurol 52(5):683–688

    CAS  Article  PubMed  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med 8(1):95–108

    CAS  Article  PubMed  Google Scholar 

  • Moser HW (2006) Therapy of X-linked adrenoleukodystrophy. NeuroRx 3:246–253

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Moser HW, Moser AB (1991) Measurement of saturated very long chain fatty acid in plasma. In: Hommes FA (ed) Techniques in diagnostics human biochemical genetics. Wiley-Liss, New York, pp 177–191

    Google Scholar 

  • Moser AB, Kreiter N, Bezman L et al (1999) Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol 45(1):100–110

    CAS  Article  PubMed  Google Scholar 

  • Moser H, Smith KD, Watkins PA, Powers J, Moser AB (2001) X-linked adrenoleukodystrophy. In: Scriver CR, Sly WS (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New-York, pp 3257–3301

    Google Scholar 

  • Moser HW, Raymond GV, Dubey P (2005a) Adrenoleukodystrophy- new approaches to a neurodegenerative disease. JAMA 294:3131–3134

    CAS  Article  PubMed  Google Scholar 

  • Moser HW, Raymond GV, Lu SE et al (2005b) Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo’s oil. Arch Neurol 62(7):1073–1080

    Article  PubMed  Google Scholar 

  • Negretto GW, Deon M, Burin M et al (2014) In vitro effect of genistein on DNA damage in leukocytes from mucopolysaccharidosis IVA patients. Mol Genet Metab 111(2):205–208

    CAS  Article  PubMed  Google Scholar 

  • Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. BBRC 338(1):668–676

    CAS  PubMed  Google Scholar 

  • Norton WT (1984) Some thoughts on the neurobiology of the leukodystrophies. Neuropediatrics 15:28–31

    Article  PubMed  Google Scholar 

  • Ohyashiki T, Sakata N, Matsui K (1994) Changes in SH reactivity of the protein in porcine intestinal brush-border membranes associated with lipid peroxidation. J Biochem 115:224–229

    CAS  PubMed  Google Scholar 

  • Pai GS, Khan M, Barbosa E et al (2000) Lovastatin therapy for X-linked adrenoleukodystrophy: clinical and biochemical observations on 12 patients. Mol Genet Metab 69:312–322

    CAS  Article  PubMed  Google Scholar 

  • Peters C, Charnas LR, Tan Y et al (2004) Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104(3):881–888

    CAS  Article  PubMed  Google Scholar 

  • Petrillo S, Piemonte F, Pastore A et al (2013) Glutathione imbalance in patients with X-linked adrenoleukodystrophy. Mol Genet Metab 109:366–370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Powers JM, Pei Z, Heinzer AK et al (2005) Adreno-leukodystrophy: oxidative stress of mice and men. J Neuropathol Exp Neurol 64:1067–1079

    CAS  Article  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288(2):481–487

    CAS  Article  PubMed  Google Scholar 

  • Ribas GS, Manfredini V, De Mari J et al (2010) Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of L-carnitine supplementation. Int J Dev Neurosci 28(2):127–132

    CAS  Article  PubMed  Google Scholar 

  • Rockenbach FJ, Deon M, Marchese DP et al (2012) The effect of bone marrow transplantation on oxidative stress in X-linked adrenoleukodystrophy. Mol Genet Metab 106:231–236

    CAS  Article  PubMed  Google Scholar 

  • Schofield D, Braganza JM (1996) Shortcomings of an automated assay for total antioxidant status in biological fluids. Clin Chem 42(10):1712–1714

    CAS  PubMed  Google Scholar 

  • Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    CAS  Article  PubMed  Google Scholar 

  • Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54(3):151–160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Singh I, Pujol A (2010) Pathomecanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis. Brain Pathol 20:838–844

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Singh I, Pahan K, Khan M (1998) Lovastatin and sodium phenylacetate normalize the levels of very long chain fatty acids in skin fibroblasts of X-adrenoleukodystrophy. FEBS Lett 426:342–346

    CAS  Article  PubMed  Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D et al (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    CAS  Article  PubMed  Google Scholar 

  • Smith KD, Kemp S, Braiterman LT et al (1999) X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem Res 24(4):521–535

    CAS  Article  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free-radical mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    CAS  Article  PubMed  Google Scholar 

  • Tarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89(3):224–236

    CAS  Article  PubMed  Google Scholar 

  • Tolar J, Orchard PJ, Bjoraker KJ, Ziegler RS, Shapiro EG, Charnas L (2007) N-acetyl-l-cysteine improves outcome of advanced cerebral adrenoleukodystrophy. Bone Marrow Transplant 39(4):211–215

    CAS  Article  PubMed  Google Scholar 

  • Triantafyllou P, Economou M, Vlachaki E et al (2014) Multiple endocrine disorders associated with adrenomyeloneuropathy and a novel mutation of the ABCD1 gene. Pediatr Neurol 50(6):622–624

    Article  PubMed  Google Scholar 

  • Uto T, Contreras MA, Gilg AG, Singh I (2008) Oxidative imbalance in nonstimulated X-adrenoleukodystrophy-derived lymphoblasts. Dev Neurosci 30:410–418

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Valko M, Leibfritz D, Moncola J, Cronin M, Mazura M, Telser I (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  Article  PubMed  Google Scholar 

  • Vargas CR, Wajner M, Sirtori LR et al (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 1688:26–32

    CAS  Article  PubMed  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    CAS  Article  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763(12):1707–1720

    CAS  Article  PubMed  Google Scholar 

  • Wanders RJA, Schutgens RBH, Barth PG, Tager JM, Van Den Bosch H (1993) Postnatal diagnosis of peroxisomal disorders: a biochemical approach. Biochemie 75:269–279

    CAS  Article  Google Scholar 

  • Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59(1):1–6

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors were supported by grants from the Brazilian Foundation Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Grant No. 007481/2011-13), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundo de Incentivo à Pesquisa e Eventos (FIPE/HCPA) (Project Nos. 01-0432, 10-0482 and 13-0247).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marion Deon or Carmen Vargas.

Ethics declarations

Conflict of interest

The authors (Marion Deon, Desirèe P. Marchetti, Bruna Donida, Moacir Wajner and Carmen R. Vargas) declare that there are no financial interests and/or no conflict of interest disclosure associated with this manuscript.

Ethical Standards

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deon, M., Marchetti, D.P., Donida, B. et al. Oxidative Stress in Patients with X-Linked Adrenoleukodystrophy. Cell Mol Neurobiol 36, 497–512 (2016). https://doi.org/10.1007/s10571-015-0234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0234-2

Keywords

  • X-linked adrenoleukodystrophy
  • Oxidative stress
  • Antioxidants
  • Oxidative damage biomarkers