Skip to main content
Log in

Quercetin Promotes Proliferation and Differentiation of Oligodendrocyte Precursor Cells After Oxygen/Glucose Deprivation-Induced Injury

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate quercetin’s (Qu) ability to promote proliferation and differentiation of oligodendrocyte precursor cells (OPCs) under oxygen/glucose deprivation (OGD)-induced injury in vitro. The results showed that after OGD, OPCs survival rate was significantly increased by Qu as measured by Cell Counting Kit-8. Furthermore, Qu treatment reduced apoptosis of OPCs surveyed by Hoechst 33258 nuclear staining. Qu at 9 and 27 μM promoted the proliferation of OPCs the most by Brdu and Olig2 immunocytochemical staining after OGD 3 days. Also, Qu treatment for 8 days after OGD, the differentiation of OPCs to oligodendrocyte was detected by immunofluorescence staining showing that O4, Olig2, and myelin basic protein (MBP) positive cells were significantly increased compared to control group. Additionally, the protein levels of Olig2 and MBP of OPCs were quantified using western blot and mRNA levels of Olig2 and Inhibitor of DNA binding 2 (Id2) were measured by RT-PCR. Western blot showed a significant increase in Olig2 and MBP expression levels compared with controls after OGD and Qu treatment with a linear does–response curve from 3 to 81 μM. After treatment with Qu compared to its control group, Olig2 mRNA level was significantly up-regulated, whereas Id2 mRNA level was down-regulated. In conclusion, Qu at 3–27 μM can promote the proliferation and differentiation of OPCs after OGD injury and may regulate the activity of Olig2 and Id2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA (2009) Protective effect of quercetin in primary neurons against Aβ (1–42): relevance to Alzheimer’s disease. J Nutr Biochem 20:269–275. doi:10.1016/j.jnutbio.2008.03.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S et al (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci 22:455–463

    CAS  PubMed  Google Scholar 

  • Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R et al (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn–RhoA and protein kinase C signalling. Brain 132:465–481. doi:10.1093/brain/awn334

    Article  PubMed Central  PubMed  Google Scholar 

  • Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740. doi:10.1097/MCO.0b013e32831394b8

    Article  CAS  PubMed  Google Scholar 

  • Chen LP, Li ZF, Ping M, Li R, Liu J et al (2012) Regulation of Olig2 during astroglial differentiation in the subventricular zone of a cuprizone-induced demyelination mouse model. Neuroscience 221:96–107. doi:10.1016/j.neuroscience.2012.06.063

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Yan H, Park YK, Kim WK (2009) Sauchinone reduces oxygen–glucose deprivation-evoked neuronal cell death via suppression of intracellular radical production. Arch Pharm Res 32:1599–1606. doi:10.1007/s12272-009-2113-1

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Yue Q, Rosenberg PA, Volpe JJ, Jensen FE (2006) Oligodendrocyte excitotoxicity determined by local glutamate accumulation and mitochondrial function. J Neurochem 98:213–222

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585. doi:10.1101/gad.1806309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ha HJ, Kwon YS, Park SM, Shin T, Park JH et al (2003) Quercetin attenuates oxygen–glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures. Biol Pharm Bull 26:544–546

    Article  CAS  PubMed  Google Scholar 

  • Hu JG, Wang YX, Wang HJ, Bao MS, Wang ZH et al (2012) PDGF-AA mediates B104CM-induced oligodendrocyte precursor cell differentiation of embryonic neural stem cells through Erk, PI3K, and p38 signaling. J Mol Neurosci 46:644–653. doi:10.1007/s12031-011-9652-x

    Article  CAS  PubMed  Google Scholar 

  • Husain J, Juurlink BH (1995) Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res 698:86–94

    Article  CAS  PubMed  Google Scholar 

  • Li H, He Y, Richardson WD, Casaccia P (2009) Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 19:479–485. doi:10.1016/j.conb.2009.08.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumura N, Yokoo H, Mao Y, Yin W, Nakazato Y (2013) Olig2-positive cells in glioneuronal tumors show both glial and neuronal characters: the implication of a common progenitor cell? Neuropathology 33:246–255. doi:10.1111/j.1440-1789.2012.01355.x

    Article  PubMed  Google Scholar 

  • Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D et al (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Sandrock A, Miller RH (2008) LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 40:1971–1978. doi:10.1016/j.biocel.2008.03.018

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Miller RH, Tang W, Lee X, Hu B et al (2009) Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 65:304–315. doi:10.1002/ana.21581

    Article  CAS  PubMed  Google Scholar 

  • Miller R, Reynolds R (2004) Oligodendroglial lineage. In: Lazzarini RA (ed) Myelin biology and disorders. Elsevier Academic, New York, pp 289–310

  • Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Tanaka KF, Takebayashi H, Higashi M, Wisesmith W et al (2013) Olig2-lineage cells preferentially differentiate into oligodendrocytes but their processes degenerate at the chronic demyelinating stage of proteolipid protein-overexpressing mouse. J Neurosci Res 91:178–186. doi:10.1002/jnr.23153

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Zhu L, Wang B (2010) From GC-rich DNA binding to the repression of survivin gene for quercetin nickel (II) complex: implications for cancer therapy. Biometals 23:1075–1084. doi:10.1007/s10534-010-9353-x

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Yao RQ, Liu X, Huang JJ, Qi DS et al (2011) Quercetin protects oligodendrocyte precursor cells from oxygen/glucose deprivation injury in vitro via the activation of PI3K/Akt signaling pathway. Brain Res Bull 86:277–284. doi:10.1016/j.brainresbull.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  • Wi HK, Chang HC, Soo KK, Chae HK, Yong KK (2005) Ceramide induces non-apoptotic cell death in human glioma cells. Neurochem Res 30:969–979. doi:10.1007/s11064-005-6223-y

    Article  Google Scholar 

  • Yao RQ, Qi DS, Yu HL, Liu J, Yang LH et al (2012) Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res 37:2777–2786. doi:10.1007/s11064-012-0871-5

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin–TCF interaction. Nat Neurosci 12:829–838. doi:10.1038/nn.2333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Natural Science Foundation of China (No. 81271345 to Ruiqin Yao, 81302519 to Xuebin Qu) and the Natural Science Foundation of Jiangsu Province (No. BK20131132 to Ruiqin Yao, BK20130221 to Xuebin Qu) and Xuzhou Medical College scientific research fund for talents (2012KJZ04 to Xiuxiang Wu).

Conflict of interest

There was no conflict of interest with other people or company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Qu, X., Zhang, Q. et al. Quercetin Promotes Proliferation and Differentiation of Oligodendrocyte Precursor Cells After Oxygen/Glucose Deprivation-Induced Injury. Cell Mol Neurobiol 34, 463–471 (2014). https://doi.org/10.1007/s10571-014-0030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0030-4

Keywords

Navigation