Skip to main content

Advertisement

Log in

Short-Term Cuprizone Feeding Induces Selective Amino Acid Deprivation with Concomitant Activation of an Integrated Stress Response in Oligodendrocytes

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cuprizone [bis(cyclohexylidenehydrazide)]-induced toxic demyelination is an experimental approach frequently used to study de- and re-myelination in the central nervous system. In this model, mice are fed with the copper chelator cuprizone which leads to oligodendrocyte apoptosis and subsequent microgliosis, astrocytosis, and demyelination. The underlying mechanisms of cuprizone-induced oligodendrocyte death are still unknown. We analysed differences in amino acid levels after short-term cuprizone exposure (i.e., 4 days). Furthermore, an amino acid response (AAR) pathway activated in oligodendrocytes after cuprizone intoxication was evaluated. Short-term cuprizone exposure resulted in a selective decrease of alanine, glycine, and proline plasma levels, which was paralleled by an increase of apoptotic cells in the liver and a decrease of alanine aminotransferase in the serum. These parameters were paralleled by oligodendrocyte apoptosis and the induction of an AAR with increased expression of the transcription factors ATF-3 and ATF-4 (activating transcription factor-3 and -4). Immunohistochemistry revealed that ATF-3 is exclusively expressed by oligodendrocytes and localized to the nuclear compartment. Our results suggest that cuprizone-induced liver dysfunction results in amino acid starvation and in consequence to the activation of an AAR. We propose that this stress response modulates oligodendrocyte viability in the cuprizone animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acs P, Kalman B (2012) Pathogenesis of multiple sclerosis: what can we learn from the cuprizone model. Methods Mol Biol 900:403–431. doi:10.1007/978-1-60761-720-4_20

    Article  PubMed  CAS  Google Scholar 

  • Acs P, Komoly S (2012) Selective ultrastructural vulnerability in the cuprizone-induced experimental demyelination. Ideggyogy Sz 65(7–8):266–270

    PubMed  Google Scholar 

  • Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57(8):807–814

    Article  PubMed  Google Scholar 

  • Belachew S, Malgrange B, Rigo JM, Rogister B, Leprince P, Hans G, Nguyen L, Moonen G (2000) Glycine triggers an intracellular calcium influx in oligodendrocyte progenitor cells which is mediated by the activation of both the ionotropic glycine receptor and Na+-dependent transporters. Eur J Neurosci 12(6):1924–1930

    Article  PubMed  CAS  Google Scholar 

  • Benetti F, Ventura M, Salmini B, Ceola S, Carbonera D, Mammi S, Zitolo A, D’Angelo P, Urso E, Maffia M, Salvato B, Spisni E (2010) Cuprizone neurotoxicity, copper deficiency and neurodegeneration. Neurotoxicology 31(5):509–517. doi:10.1016/j.neuro.2010.05.008

    Article  PubMed  CAS  Google Scholar 

  • Bertfield DL, Jumma O, Pitceathly RD, Sussman JD (2008) Copper deficiency: an unusual case of myelopathy with neuropathy. Ann Clin Biochem 45(Pt 4):434–435. doi:10.1258/acb.2008.007218

    Article  PubMed  Google Scholar 

  • Bhat NR, Zhang P, Bhat AN (1995) The expression of myristoylated alanine-rich C-kinase substrate in oligodendrocytes is developmentally regulated. Dev Neurosci 17(4):256–263

    Article  PubMed  CAS  Google Scholar 

  • Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1(4):413–426

    Article  PubMed  CAS  Google Scholar 

  • Blakemore WF (1973) Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci 20(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Braun A, Dang J, Johann S, Beyer C, Kipp M (2009) Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int 55(7):610–618

    Article  PubMed  CAS  Google Scholar 

  • Bruck W, Pfortner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, Hanisch UK, Regen T, van Rossum D, Brakelmann L, Hagemeier K, Kuhlmann T, Stadelmann C, John GR, Kramann N, Wegner C (2012) Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol. doi:10.1007/s00401-012-1009-1

    Google Scholar 

  • Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci 48(1):66–76. doi:10.1007/s12031-012-9773-x

    Article  PubMed  CAS  Google Scholar 

  • Carlton WW (1966) Response of mice to the chelating agents sodium diethyldithiocarbamate, alpha-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharmacol 8(3):512–521

    Article  PubMed  CAS  Google Scholar 

  • Carlton WW (1967) Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci 6(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, An DH, Xing Y, Qi X (2012) Central pontine and extrapontine myelinolysis associated with acute hepatic dysfunction. Neurol Sci 33(3):673–676. doi:10.1007/s10072-011-0838-3

    Article  PubMed  Google Scholar 

  • Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S, Kipp M (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. doi:10.1002/glia.22367

    Google Scholar 

  • De AK, Subramanian M (1982) Effect of cuprizone feeding on hepatic superoxide dismutase and cytochrome oxidase activities in mice. Experientia 38(7):784–785

    Article  PubMed  CAS  Google Scholar 

  • Ferreira D, Castro S, Nadais G, Dias Costa JM, Fonseca JM (2011) Demyelinating lesions with features of Balo’s concentric sclerosis in a patient with active hepatitis C and human herpesvirus 6 infection. Eur J Neurol 18(1):e6–7. doi:10.1111/j.1468-1331.2010.03201.x

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Kilberg MS (2013) Elevated cJUN expression and an ATF/CRE site within the ATF3 promoter contribute to activation of ATF3 transcription by the amino acid response. Physiol Genomics 45(4):127–137. doi:10.1152/physiolgenomics.00160.2012

    Article  PubMed  CAS  Google Scholar 

  • Goodman BP, Chong BW, Patel AC, Fletcher GP, Smith BE (2006) Copper deficiency myeloneuropathy resembling B12 deficiency: partial resolution of MR imaging findings with copper supplementation. AJNR Am J Neuroradiol 27(10):2112–2114

    PubMed  CAS  Google Scholar 

  • Gudi V, Skuljec J, Yildiz O, Frichert K, Skripuletz T, Moharregh-Khiabani D, Voss E, Wissel K, Wolter S, Stangel M (2011) Spatial and temporal profiles of growth factor expression during CNS demyelination reveal the dynamics of repair priming. PLoS ONE 6(7):e22623. doi:10.1371/journal.pone.0022623

    Article  PubMed  CAS  Google Scholar 

  • Harding BN, Alsanjari N, Smith SJ, Wiles CM, Thrush D, Miller DH, Scaravilli F, Harding AE (1995) Progressive neuronal degeneration of childhood with liver disease (Alpers’ disease) presenting in young adults. J Neurol Neurosurg Psychiatry 58(3):320–325

    Article  PubMed  CAS  Google Scholar 

  • Hesse A, Wagner M, Held J, Bruck W, Salinas-Riester G, Hao Z, Waisman A, Kuhlmann T (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37(2):362–369. doi:10.1016/j.nbd.2009.10.016

    Article  PubMed  CAS  Google Scholar 

  • Hoppel CL, Tandler B (1973) Biochemical effects of cuprizone on mouse liver and heart mitochondria. Biochem Pharmacol 22(18):2311–2318

    Article  PubMed  CAS  Google Scholar 

  • Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N, Habert R, Mhaouty-Kodja S, Tronche F, Sitruk-Ware R, Schumacher M, Ghandour MS (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 136(Pt 1):132–146. doi:10.1093/brain/aws284

    PubMed  Google Scholar 

  • Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141. doi:10.1038/ng.507

    Article  PubMed  CAS  Google Scholar 

  • Jourdan C, Petersen AK, Gieger C, Doring A, Illig T, Wang-Sattler R, Meisinger C, Peters A, Adamski J, Prehn C, Suhre K, Altmaier E, Kastenmuller G, Romisch-Margl W, Theis FJ, Krumsiek J, Wichmann HE, Linseisen J (2012) Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS ONE 7(6):e40009. doi:10.1371/journal.pone.0040009

    Article  PubMed  CAS  Google Scholar 

  • Kamei A, Ichinohe S, Onuma R, Hiraga S, Fujiwara T (1997) Acute disseminated demyelination due to primary human herpesvirus-6 infection. Eur J Pediatr 156(9):709–712

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Liu L, Spangler R, Spear C, Wang C, Gulen MF, Veenstra M, Ouyang W, Ransohoff RM, Li X (2012) IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. J Neurosci 32(24):8284–8292. doi:10.1523/JNEUROSCI.0841-12.2012

    Article  PubMed  CAS  Google Scholar 

  • Kesterson JW, Carlton WW (1971) Histopathologic and enzyme histochemical observations of the cuprizone-induced brain edema. Exp Mol Pathol 15(1):82–96

    Article  PubMed  CAS  Google Scholar 

  • Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20(9):436–443. doi:10.1016/j.tem.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  • Kilberg MS, Balasubramanian M, Fu L, Shan J (2012) The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 3(3):295–306. doi:10.3945/an.112.001891

    Article  PubMed  CAS  Google Scholar 

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736. doi:10.1007/s00401-009-0591-3

    Article  PubMed  Google Scholar 

  • Kipp M, Gingele S, Pott F, Clarner T, van der Valk P, Denecke B, Gan L, Siffrin V, Zipp F, Dreher W, Baumgartner W, Pfeifenbring S, Godbout R, Amor S, Beyer C (2011a) BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain Behav Immun 25(8):1554–1568. doi:10.1016/j.bbi.2011.05.003

    Article  PubMed  CAS  Google Scholar 

  • Kipp M, Norkus A, Krauspe B, Clarner T, Berger K, van der Valk P, Amor S, Beyer C (2011b) The hippocampal fimbria of cuprizone-treated animals as a structure for studying neuroprotection in multiple sclerosis. Inflamm Res 60(8):723–726. doi:10.1007/s00011-011-0339-0

    Article  PubMed  CAS  Google Scholar 

  • Kipp M, van der Valk P, Amor S (2012) Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):506–517

    Article  PubMed  CAS  Google Scholar 

  • Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD (2010) Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 30(19):6658–6666. doi:10.1523/JNEUROSCI.5265-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Komoly S, Jeyasingham MD, Pratt OE, Lantos PL (1987) Decrease in oligodendrocyte carbonic anhydrase activity preceding myelin degeneration in cuprizone induced demyelination. J Neurol Sci 79(1–2):141–148

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Gross JB Jr, Ahlskog JE (2004) Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology 63(1):33–39

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Goyal MK, Lucchese S, Dhand U (2011) Copper deficiency myelopathy can also involve the brain stem. AJNR Am J Neuroradiol 32(1):E14–15. doi:10.3174/ajnr.A2261

    PubMed  CAS  Google Scholar 

  • Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S, Liu X (2012) Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med 16(7):1618–1628. doi:10.1111/j.1582-4934.2011.01401.x

    Article  PubMed  CAS  Google Scholar 

  • Lovas G, Nielsen JA, Johnson KR, Hudson LD (2010) Alterations in neuronal gene expression profiles in response to experimental demyelination and axonal transection. Mult Scler 16(3):303–316. doi:10.1177/1352458509357063

    Article  PubMed  CAS  Google Scholar 

  • Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Investig 39(6):597–612

    PubMed  CAS  Google Scholar 

  • Lv D, Meng D, Zou FF, Fan L, Zhang P, Yu Y, Fang J (2011) Activating transcription factor 3 regulates survivability and migration of vascular smooth muscle cells. IUBMB Life 63(1):62–69. doi:10.1002/iub.416

    Article  PubMed  CAS  Google Scholar 

  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130(Pt 11):2800–2815

    Article  PubMed  Google Scholar 

  • Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116

    Article  PubMed  CAS  Google Scholar 

  • McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8(9):913–919

    Article  PubMed  CAS  Google Scholar 

  • Messori L, Casini A, Gabbiani C, Sorace L, Muniz-Miranda M, Zatta P (2007) Unravelling the chemical nature of copper cuprizone. Dalton Trans 21:2112–2114. doi:10.1039/b701896g

    Article  PubMed  Google Scholar 

  • Min Y, Park SH, Hwang SB (2012) Corticospinal tract and pontocerebellar fiber of central pontine myelinolysis. Ann Rehabil Med 36(6):887–892. doi:10.5535/arm.2012.36.6.887

    Article  PubMed  Google Scholar 

  • Montejo Gonzalez JC, Mesejo A, Bonet Saris A (2011) Guidelines for specialized nutritional and metabolic support in the critically-ill patient: update. Consensus SEMICYUC-SENPE: liver failure and liver transplantation. Nutr Hosp 26(Suppl 2):27–31. doi:10.1590/S0212-16112011000800006

    PubMed  Google Scholar 

  • Nielsen JA, Maric D, Lau P, Barker JL, Hudson LD (2006) Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 26(39):9881–9891. doi:10.1523/JNEUROSCI.2246-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Pan YX, Chen H, Thiaville MM, Kilberg MS (2007) Activation of the ATF3 gene through a co-ordinated amino acid-sensing response programme that controls transcriptional regulation of responsive genes following amino acid limitation. Biochem J 401(1):299–307. doi:10.1042/BJ20061261

    Article  PubMed  CAS  Google Scholar 

  • Petronilli V, Zoratti M (1990) A characterization of cuprizone-induced giant mouse liver mitochondria. J Bioenerg Biomembr 22(5):663–677

    Article  PubMed  CAS  Google Scholar 

  • Pott F, Gingele S, Clarner T, Dang J, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res 1305:137–149. doi:10.1016/j.brainres.2009.09.084

    Article  PubMed  CAS  Google Scholar 

  • Russanov EM, Ljutakova SG (1980) Effect of cuprizone on copper exchange and superoxide dismutase activity in rat liver. Gen Pharmacol 11(6):535–538

    Article  PubMed  CAS  Google Scholar 

  • Sayers CM, Papandreou I, Guttmann DM, Maas NL, Diehl JA, Witze ES, Koong AC, Koumenis C (2013) Identification and characterization of a potent activator of p53-independent cellular senescence via a small-molecule screen for modifiers of the integrated stress response. Mol Pharmacol 83(3):594–604. doi:10.1124/mol.112.081810

    Article  PubMed  CAS  Google Scholar 

  • Sellner J, Kraus J, Awad A, Milo R, Hemmer B, Stuve O (2011) The increasing incidence and prevalence of female multiple sclerosis—a critical analysis of potential environmental factors. Autoimmun Rev 10(8):495–502

    Article  PubMed  Google Scholar 

  • Sikalidis AK, Lee JI, Stipanuk MH (2011) Gene expression and integrated stress response in HepG2/C3A cells cultured in amino acid deficient medium. Amino Acids 41(1):159–171. doi:10.1007/s00726-010-0571-x

    Article  PubMed  CAS  Google Scholar 

  • Siskova Z, Baron W, de Vries H, Hoekstra D (2006) Fibronectin impedes “myelin” sheet-directed flow in oligodendrocytes: a role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking. Mol Cell Neurosci 33(2):150–159. doi:10.1016/j.mcn.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26(12):1585–1597

    PubMed  CAS  Google Scholar 

  • Song DY, Oh KM, Yu HN, Park CR, Woo RS, Jung SS, Baik TK (2011) Role of activating transcription factor 3 in ischemic penumbra region following transient middle cerebral artery occlusion and reperfusion injury. Neurosci Res 70(4):428–434. doi:10.1016/j.neures.2011.05.002

    Article  PubMed  CAS  Google Scholar 

  • Sookoian S, Pirola CJ (2012) Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol 18(29):3775–3781. doi:10.3748/wjg.v18.i29.3775

    Article  PubMed  CAS  Google Scholar 

  • Southwood CM, Garbern J, Jiang W, Gow A (2002) The unfolded protein response modulates disease severity in Pelizaeus–Merzbacher disease. Neuron 36(4):585–596

    Article  PubMed  CAS  Google Scholar 

  • Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, Altmaier E, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, de Angelis MH, Kastenmuller G, Kottgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger T, Mewes HW, Milburn MV, Prehn C, Raffler J, Ried JS, Romisch-Margl W, Samani NJ, Small KS, Wichmann HE, Zhai G, Illig T, Spector TD, Adamski J, Soranzo N, Gieger C (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60. doi:10.1038/nature10354

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K (1969) Giant hepatic mitochondria: production in mice fed with cuprizone. Science 163(3862):81–82

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kikkawa Y (1969) Status spongiosus of CNS and hepatic changes induced by cuprizone (biscyclohexanone oxalyldihydrazone). Am J Pathol 54(2):307–325

    PubMed  CAS  Google Scholar 

  • Utku U, Asil T, Balci K, Uzunca I, Celik Y (2005) Hepatic myelopathy with spastic paraparesis. Clin Neurol Neurosurg 107(6):514–516. doi:10.1016/j.clineuro.2004.10.002

    Article  PubMed  Google Scholar 

  • van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S (2012) In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):570–588

    Article  PubMed  Google Scholar 

  • Venturini G (1973) Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem 21(5):1147–1151

    Article  PubMed  CAS  Google Scholar 

  • Yoon K, Lee SO, Cho SD, Kim K, Khan S, Safe S (2011) Activation of nuclear TR3 (NR4A1) by a diindolylmethane analog induces apoptosis and proapoptotic genes in pancreatic cancer cells and tumors. Carcinogenesis 32(6):836–842. doi:10.1093/carcin/bgr040

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa F (2012) New therapeutic strategy for amino acid medicine: notable functions of branched chain amino acids as biological regulators. J Pharmacol Sci 118(2):149–155

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Saari JT, Johnson WT (2007) Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. J Nutr 137(1):14–18

    PubMed  CAS  Google Scholar 

  • Zhang SJ, Buchthal B, Lau D, Hayer S, Dick O, Schwaninger M, Veltkamp R, Zou M, Weiss U, Bading H (2011) A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31(13):4978–4990. doi:10.1523/JNEUROSCI.2672-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Zou LP, Pelidou SH, Abbas N, Deretzi G, Mix E, Schaltzbeerg M, Winblad B, Zhu J (1999) Dynamics of production of MIP-1alpha, MCP-1 and MIP-2 and potential role of neutralization of these chemokines in the regulation of immune responses during experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 98(2):168–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by START Grants of the Medical Faculty, RWTH Aachen (TC). We would like to thank Helga Helten and Sandra Vidal de la Torre for their excellent technical assistance.

Conflict of interest

The authors of this manuscript do not have any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kipp.

Additional information

Goldberg J and Daniel M have contributed equally to this work as first authors and T Clarner and Kipp M have contributed equally to this work as last authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, J., Daniel, M., van Heuvel, Y. et al. Short-Term Cuprizone Feeding Induces Selective Amino Acid Deprivation with Concomitant Activation of an Integrated Stress Response in Oligodendrocytes. Cell Mol Neurobiol 33, 1087–1098 (2013). https://doi.org/10.1007/s10571-013-9975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9975-y

Keywords

Navigation