Skip to main content
Log in

Stress Stimulates Production of Catecholamines in Rat Adipocytes

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The sympathoadrenal system is the main source of catecholamines (CAs) in adipose tissues and therefore plays the key role in the regulation of adipose tissue metabolism. We recently reported existence of an alternative CA-producing system directly in adipose tissue cells, and here we investigated effect of various stressors—physical (cold) and emotional stress (immobilization) on dynamics of this system. Acute or chronic cold exposure increased intracellular norepinephrine (NE) and epinephrine (EPI) concentration in isolated rat mesenteric adipocytes. Gene expression of CA biosynthetic enzymes did not change in adipocytes but was increased in stromal vascular fraction (SVF) after 28 day cold. Exposure of rats to a single IMO stress caused increases in NE and EPI levels, and also gene expression of CA biosynthetic enzymes in adipocytes. In SVF changes were similar but more pronounced. Animals adapted to a long-term cold exposure (28 days, 4°C) did not show those responses found after a single IMO stress either in adipocytes or SVF. Our data indicate that gene machinery accommodated in adipocytes, which is able to synthesize NE and EPI de novo, is significantly activated by stress. Cold-adapted animals keep their adaptation even after an exposure to a novel stressor. These findings suggest the functionality of CAs produced endogenously in adipocytes. Taken together, the newly discovered CA synthesizing system in adipocytes is activated in stress situations and might significantly contribute to regulation of lipolysis and other metabolic or thermogenetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Astori G, Vignati F, Bardelli S, Tubio M, Gola M, Albertini V, Bambi F, Scali G, Castelli D, Rasini V, Soldati GT, Moccetti T (2007) “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 5:55

    Article  PubMed  Google Scholar 

  • Bartness TJ, Bamshad M (1998) Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol 275:R1399–R1411

    PubMed  CAS  Google Scholar 

  • Bartness TJ, Song CK (2007) Sympathetic and sensory innervation of white adipose tissue. J Lipid Res 48:1655–1672

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK (2010) Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318:34–43

    Article  PubMed  CAS  Google Scholar 

  • Bartolomucci A, Cabassi A, Govoni P, Ceresini G, Cero C, Berra D, Dadomo H, Franceschini P, Dell′Omo G, Parmigiani S, Palanza P (2009) Metabolic consequences and vulnerability to diet-induced obesity in male mice under chronic social stress. PLoS ONE 4:e4331

    Article  PubMed  Google Scholar 

  • Bergquist J, Ohlsson B, Tarkowski A (2000) Nuclear factor-kappa B is involved in the catecholaminergic suppression of immunocompetent cells. Ann N Y Acad Sci 917:281–289

    Article  PubMed  CAS  Google Scholar 

  • Berlan M, Lafontan M (1982) The alpha 2-adrenergic receptor on human fat cells: comparative study of alpha 2-adrenergic radioligand binding and biological response. J Physiol (Paris) 78:279–287

    CAS  Google Scholar 

  • Bottner A, Haidan A, Eisenhofer G, Kristensen K, Castle AL, Scherbaum WA, Schneider H, Chrousos GP, Bornstein SR (2001) Increased body fat mass and suppression of circulating leptin levels in response to hypersecretion of epinephrine in phenylethanolamine-N-methyltransferase (PNMT)-overexpressing mice. Endocrinology 141:4239–4246

    Article  Google Scholar 

  • Bowers RR, Festuccia WT, Song CK, Shi H, Migliorini RH, Bartness TJ (2004) Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol 286:R1167–R1175

    Article  PubMed  CAS  Google Scholar 

  • Brito NA, Brito MN, Bartness TJ (2008) Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol Regul Interg Comp Physiol 294:R1445–R1452

    Article  CAS  Google Scholar 

  • Buu NT (1993) Uptake of 1-methyl-4-phenylpyridinium and dopamine in the mouse brain cell nuclei. J Neurochem 61:1557–1560

    Article  PubMed  CAS  Google Scholar 

  • Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, Casteilla L, Penicaud L (2005) Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett 579:3487–3492

    Article  PubMed  CAS  Google Scholar 

  • Dronjak S, Ondriska M, Svetlovska D, Jezova D, Kvetnansky R (2002) Effects of novel stressors on plasma catecholamine levels in rats exposed to long-term cold. In: McCarty R, Aguilera G, Sabban EL, Kvetnansky R (eds) Stress neural, endocrine and molecular studies. Taylor and Francis, London/New York, pp 83–89

    Google Scholar 

  • Engler KL, Rudd ML, Ryan JJ, Stewart JK, Fischer-Stenger K (2005) Autocrine actions of macrophage-derived catecholamines on interleukin-1 beta. J Neuroimmunol 160:87–91

    Article  PubMed  CAS  Google Scholar 

  • Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, Araki J, Yoshimura K (2009) Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 124(4):1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening Pandora’s box? Mol Med 14:195–204

    PubMed  CAS  Google Scholar 

  • Giordano A, Frontini A, Murano I, Tonello C, Marino MA, Carruba MO, Nisoli E, Cinti S (2005) Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 53:679–687

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DS, Kopin IJ (2008) Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocr Regul 42:111–119

    PubMed  Google Scholar 

  • Guo NN, Li BM (2007) Cellular and subcellular distributions of β1- and β2-adrenoceptors in the CA1 and CA3 regions of the rat hippocampus. Neuroscience 146:298–305

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt B (1951) Noradrenaline and adrenaline in mammalian tissues. Acta Physiol Scand 25(92):134 Suppl 92

    Google Scholar 

  • Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 13(7):803–811

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Mikulaj L (1970) Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87:738–743

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Weise VK, Gewirtz GP, Kopin IJ (1971a) Synthesis of adrenal catecholamines in rats during and after immobilization stress. Endocrinology 89:46–49

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Gewirtz GP, Weise VK, Kopin IJ (1971b) Catecholamine-synthesizing enzymes in the rat adrenal gland during exposure to cold. Am J Physiol 220:928–931

    PubMed  CAS  Google Scholar 

  • Kvetnansky R, Palkovits M, Mitro A, Torda T, Mikulaj L (1977) Catecholamines in individual hypothalamic nuclei of acutely and repeatedly stressed rats. Neuroendocrinology 23:257–267

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Sun CL, Lake CR, Thoa N, Torda T, Kopin IJ (1978) Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-beta-hydroxylase. Endocrinology 103:1868–1874

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Weise VK, Thoa NB, Kopin IJ (1979) Effects of chronic guanethidine treatment and adrenal medullectomy on plasma levels of catecholamines and corticosterone in forcibly immobilized rats. J Pharmacol Exp Ther 209:287–291

    PubMed  CAS  Google Scholar 

  • Kvetnansky R, Pacak K, Fukuhara K, Viskupic E, Hiremagalur B, Nankova B, Goldstein DS, Sabban EL, Kopin IJ (1995) Sympathoadrenal system in stress. Interaction with the hypothalamic-pituitary-adrenocortical system. Ann N Y Acad Sci 771:131–158

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Pacak K, Sabban EL, Kopin IJ, Goldstein DS (1998) Stressor specificity of peripheral catecholaminergic activation. Adv Pharmacol 42:556–560

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Jelokova J, Rusnak M, Dronjak S, Serova L, Nankova B, Sabban EL (2002) Novel stressors exaggerate tyrosine hydroxylase gene expression in the adrenal medulla of rats exposed to long-term cold stress. In: McCarty R, Aguilera G, Sabban EL, Kvetnansky R (eds) Stress neural, endocrine and molecular studies. Taylor and Francis, London/New York, pp 121–128

    Google Scholar 

  • Kvetnansky R, Micutkova L, Rychkova N, Kubovcakova L, Mravec B, Filipenko M, Sabban EL, Krizanova O (2004) Quantitative evaluation of catecholamine enzymes gene expression in adrenal medulla and sympathetic ganglia of stressed rats. Ann N Y Acad Sci 1018:356–369

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89:535–606

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1995) Fat cell alpha2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocr Rev 16:716–738

    PubMed  CAS  Google Scholar 

  • Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297

    Article  PubMed  CAS  Google Scholar 

  • Laukova M, Vargovic P, Krizanova O, Kvetnansky R (2010) Repeated stress down-regulates beta 2- and alpha 2C-adrenergic receptors and up-regulates gene expression of IL-6 in the rat spleen. Cell Mol Neurobiol 30:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Laukova M, Vargovic P, Csaderova L, Chovanova L, Vlcek M, Imrich R, Krizanova O, Kvetnansky R (2012) Acute stress differently modulates beta 1, beta 2 and beta 3 adrenoceptors in T cells, but not in B cells, from the rat spleen. Neuroimmunomodulation 19:69–78

    Article  PubMed  CAS  Google Scholar 

  • Lenartowski R, Goc A (2011) Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci 29(8):873–883

    Article  PubMed  CAS  Google Scholar 

  • Lencesova L, Sirova M, Csaderova L, Laukova M, Sulova Z, Kvetnansky R, Krizanova O (2010) Changes and role of adrenoceptors in PC12 cells after phenylephrine administration and apoptosis induction. Neurochem Int 57:884–892

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Garcia M, Ning H, Banie L, Guo Y-L, Lue TF, Lin C-S (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Morton RE, Evans TA (1992) Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Anal Biochem 204:332–334

    Article  PubMed  CAS  Google Scholar 

  • Nakashima A, Hayashi N, Kanek YS, Mori K, Sabban EL, Nagatsu T, Ota A (2007) RNAi of 14-3-3eta protein increases intracellular stability of tyrosine hydroxylase. Biochem Biophys Res Commun 363(3):817–821

    Article  PubMed  CAS  Google Scholar 

  • Nankova B, Kvetnansky R, McMahon A, Viskupic E, Hiremagalu B, Frankle G, Fukuhara K, Kopin IJ, Sabban EL (1994) Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress. Proc Natl Acad Sci USA 91(13):5937–5941

    Article  PubMed  CAS  Google Scholar 

  • Nguyen KD, Qiu Y, Cui X, Goh YPS, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–109

    Article  PubMed  CAS  Google Scholar 

  • Panayotacopoulou MT, Malidelis Y, van Heerikhuize J, Unmehopa U, Swaab D (2005) Individual differences in the expression of tyrosine hydroxylase mRNA in neurosecretory neurons of the human paraventricular and supraoptic nuclei: positive correlation with vasopressin mRNA. Neuroendocrilogy 81(5):329–338

    Article  CAS  Google Scholar 

  • Pendleton RG, Gessner G, Sawyer J (1978) Studies on the distribution of phenylethanolamine N-methyltransferase and epinephrine in the rat. Res Commun Chem Pathol Pharmacol 21:315–325

    PubMed  CAS  Google Scholar 

  • Pizzinat N, Marti L, Remaury A, Leger F, Langin D, Lafontan M, Carpéné C, Parini A (1999) High expression of monoamine oxidases in human white adipose tissue: evidence for their involvement in noradrenaline clearance. Biochem Pharmacol 58(11):1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Qu LL, Guo NN, Li BM (2008) Beta1- and beta2-adrenoceptors in basolateral nucleus of amygdala and their roles in consolidation of fear memory in rats. Hippocampus 18:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Sabban EL (2007) Catecholamines in stress: molecular mechanisms of gene expression. Endocr Regul 41:61–73

    PubMed  CAS  Google Scholar 

  • Sabban EL, Kvetnansky R (2001) Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 24:91–98

    Article  PubMed  CAS  Google Scholar 

  • Sabban EL, Liu X, Serova L, Gueorguiev V, Kvetnansky R (2006) Stress triggered changes in gene expression in adrenal medulla: transcriptional responses to acute and chronic stress. Cell Mol Neurobiol 26:845–856

    Article  PubMed  CAS  Google Scholar 

  • Schaffler A, Buchler C (2007) Coincise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827

    Article  PubMed  Google Scholar 

  • Slavin BG, Ballard KW (1978) Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec 191:377–389

    Article  PubMed  CAS  Google Scholar 

  • Spengler RN, Chensue SW, Giacherio DA, Blenk N, Kunkel SL (1994) Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J Immunol 152:3024–3031

    PubMed  CAS  Google Scholar 

  • Sudo A (1985) Accumulation of adrenaline in sympathetic nerve endings in various organs of the rat exposed to swimming stress. Jpn J Pharmacol 38:367–374

    Article  PubMed  CAS  Google Scholar 

  • Sudo A (1987) Adrenaline in various organs of the rat: its origin, location and diurnal fluctuacion. Life Sci 41:2477–2484

    Article  PubMed  CAS  Google Scholar 

  • Tchoukalova YD, Koutsari K, Karpyak MV, Votruba SV, Wendland E, Jensen MD (2008) Subcutaneous adipocyte size and body fat distribution. Am J Clin Nutr 87:56–63

    PubMed  CAS  Google Scholar 

  • Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL (2010) Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 30:1459–1465

    Article  PubMed  CAS  Google Scholar 

  • Vargovic P, Ukropec J, Laukova M, Cleary S, Manz B, Pacak K, Kvetnansky R (2011) Adipocytes as a new source of catecholamine production. FEBS Lett 585:2279–2284

    Article  PubMed  CAS  Google Scholar 

  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  • Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, Gimble JM (2010) Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 12(4):538–546

    Article  PubMed  CAS  Google Scholar 

  • Zhu XH, He QL, Lin ZH (2003) Effect of catecholamines on human preadipocyte proliferation and differentiation. Zhongua Xing Wai Ke Za Zhi 19:282–284

    Google Scholar 

Download references

Acknowledgments

This research was supported by Slovak Research and Development Agency (No. APVV-0088-10 and 0148–06); TRANSMED 2, ITMS: 26240120030; VEGA Grants (2/0188/09 and 2/0036/11) and EFSD New Horizonts Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kvetnansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvetnansky, R., Ukropec, J., Laukova, M. et al. Stress Stimulates Production of Catecholamines in Rat Adipocytes. Cell Mol Neurobiol 32, 801–813 (2012). https://doi.org/10.1007/s10571-012-9822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9822-6

Keywords

Navigation