Skip to main content

Advertisement

Log in

Stress Triggered Changes in Gene Expression in Adrenal Medulla: Transcriptional Responses to Acute and Chronic Stress

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Stress elicits activation of several transcription factors involved in the regulation of catecholamine biosynthetic enzyme gene expression depending on its duration or repetition. However, the dynamic of the conversion of transient transcriptional activation with acute stress to sustained changes in transcription in response to repeated exposure to stress in adrenomedullary catecholaminergic systems is not clear.

2. Here, we analyzed changes in levels of phospho-CREB (P-CREB), phospho-ERK1/2 (P-ERK1/2) and Fra-2 by Western Blot analysis in adrenal medulla of Sprague Dawley male rats exposed to single or repeated immobilization stress (IMO). For single stress, rats were immobilized for 5 min, 30 min, or 2 h and sacrificed immediately afterwards. In the repeated stress conditions, animals were immobilized for 2 h daily on each consecutive day prior to the final day (day 2 for 2× IMO, day 6 for 6× IMO) in which the rats were immobilized for a session lasting 5 min, 30 min or 2 h. There were two control groups, an absolute control (AC) not exposed to stress, and a handled control (HC) gently handled daily for 6 days.

3. Phosphorylation of CREB was rapid and elevated at the earliest time examined, even with single stress. However, with a second daily episode of stress the increase in P-CREB was observed for at least the entire duration of the stress. In contrast, phosphorylation of ERK1/2 was only significant after brief exposure to a single IMO. The elevation of Fra-2 protein level was slower, but was significant after 2 h of a single IMO. With repeated IMO, there were marked elevations of Fra-2 throughout the 2 h IMO, which were especially pronounced at the end of the immobilization.

4. The transient nature of the phosphorylation of CREB may be responsible for the short-lived induction of transcription of catecholamine biosynthetic enzymes after brief exposure to a single immobilization stress. The sustained phosphorylation of CREB throughout the repeated stress coupled with induction of Fra-2 may mediate the longer lasting responses to repeated stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Antoni, M. H., Lutgendorf, S. K., et al. (2006). The influence of bio-behavioral factors on tumor biology: Pathways and mechanisms. Nat. Rev. Cancer 6(3):240–248.

    Article  PubMed  CAS  Google Scholar 

  • Armando, I., Jezova, M., et al. (2004). Angiotensin II AT1 and AT2 receptor types regulate basal and stress-induced adrenomedullary catecholamine production through transcriptional regulation of tyrosine hydroxylase. Ann. NY Acad. Sci. 1018:302–309.

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones, G., Rajkowski, J., et al. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatr. 46(9):1309–1320.

    Article  CAS  Google Scholar 

  • Axelrod, J. and Reisine, T. D. (1984). Stress hormones: Their interaction and regulation. Science 224(4648):452–459.

    Article  PubMed  CAS  Google Scholar 

  • Bito, H., Deisseroth, K., et al. (1996). CREB phosphorylation and dephosphorylation: A Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87(7):1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Cambi, F., Fung, B., et al. (1989). 5′ flanking DNA sequences direct cell-specific expression of rat tyrosine hydroxylase. J. Neurochem. 53(5):1656–1659.

    Article  PubMed  CAS  Google Scholar 

  • Carrico, A. W., Antoni, M. H., et al. (2006). Reductions in depressed mood and denial coping during cognitive behavioral stress management with HIV-positive gay men treated with HAART. Ann. Behav. Med. 31(2):155–164.

    Article  PubMed  Google Scholar 

  • Charney, D. S., and Manji, H. K. (2004). Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Sci. STKE 2004(225):re5.

    Article  PubMed  Google Scholar 

  • Chrousos, G. P., and Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, M. A., Serova, L. I., et al. (2005). Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and MAP kinases in the rat locus coeruleus. J. Neurochem. 95:483–498.

    Article  CAS  Google Scholar 

  • Herman, J. P., Ostrander, M. M., et al. (2005). Limbic system mechanisms of stress regulation: Hypothalamo–pituitary–adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatr. 29(8):1201–1213.

    Article  CAS  Google Scholar 

  • Impey, S., McCorkle, S. R., et al. (2004). Defining the CREB regulon: A genome-wide analysis of transcription factor regulatory regions. Cell 119(7):1041–1054.

    PubMed  CAS  Google Scholar 

  • Jezova, M., Armando, I., et al. (2003). Angiotensin II AT(1) and AT(2) receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology 144(5):2092–2101.

    Article  PubMed  CAS  Google Scholar 

  • Johannessen, M., Delghandi, M. P., et al. (2004). What turns CREB on? Cell Signal. 16(11):1211–1227.

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne, E. J., Nankova, B. B., et al. (1992). Regulated expression of the tyrosine hydroxylase gene by membrane depolarization. Identification of the responsive element and possible second messengers. J. Biol. Chem. 267(11):7563–7569.

    PubMed  CAS  Google Scholar 

  • Kim, K. S., Tinti, C., et al. (1994). Cyclic AMP-dependent protein kinase regulates basal and cyclic AMP-stimulated but not phorbol ester-stimulated transcription of the tyrosine hydroxylase gene. J. Neurochem. 63(3):834–842.

    Article  PubMed  CAS  Google Scholar 

  • Kvetnansky, R., Gewirtz, G. P., et al. (1971). Enhanced synthesis of adrenal dopamine beta-hydroxylase induced by repeated immobilization in rats. Mol. Pharmacol. 7(1):81–86.

    PubMed  CAS  Google Scholar 

  • Kvetnansky, R., Mikulaj, L. (1970). Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87(4):738–743.

    PubMed  CAS  Google Scholar 

  • Kvetnansky, R., Sabban, E. L. (1993). Stress-induced changes in tyrosine hydroxylase and other cathecolamine biosynthetic enzymes. In Naoi, M., and Parvez, S. H. (eds.), Tyrosine Hydroxylase: From Dicscovery to Cloning. VSP, Utrecht, The Natherlands.

  • Kvetnansky, R., Weise, V. K., et al. (1970). Elevation of adrenal tyrosine hydroxylase and phenylethanolamine-N-methyl transferase by repeated immobilization of rats. Endocrinology 87(4):744–749.

    Article  PubMed  CAS  Google Scholar 

  • Lewis-Tuffin, L. J., Quinn, P. G., et al. (2004). Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol. Cell Neurosci. 25(3):536–547.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Kvetnansky, R., et al. (2005). Increased susceptibility to transcriptional changes with novel stressor in adrenal medulla of rats exposed to prolonged cold stress. Brain Res. Mol. Brain Res. 141(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. S. (1998). Protective and damaging effects of stress mediators. N. Engl. J. Med. 338(3):171–179.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, A., Kvetnansky, R., et al. (1992). Regulation of tyrosine hydroxylase and dopamine beta-hydroxylase mRNA levels in rat adrenals by a single and repeated immobilization stress. J. Neurochem. 58(6):2124–2130.

    Article  PubMed  CAS  Google Scholar 

  • Montminy, M. R., and Bilezikjian, L. M. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328(6126):175–178.

    Article  PubMed  CAS  Google Scholar 

  • Nankova, B., Kvetnansky, R., et al. (1994). Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress. Proc. Natl. Acad. Sci. USA 91(13):5937–5941.

    Article  PubMed  CAS  Google Scholar 

  • Nankova, B. B., Rivkin, M., et al. (2000). Fos-related antigen 2: Potential mediator of the transcriptional activation in rat adrenal medulla evoked by repeated immobilization stress. J. Neurosci. 20(15):5647–5653.

    PubMed  CAS  Google Scholar 

  • Nankova, B. B., and Sabban, E. L. (1999). Multiple signaling pathways exist in the stress-triggered regulation of gene expression for catecholamine biosynthetic enzymes and several neuropeptides in the rat adrenal medulla. Acta Physiol. Scand. 167(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  • Nankova, B. B., Tank, A. W., et al. (1999). Transient or sustained transcriptional activation of the genes encoding rat adrenomedullary catecholamine biosynthetic enzymes by different durations of immobilization stress. Neuroscience 94(3):803–808.

    Article  PubMed  CAS  Google Scholar 

  • Osterhout, C. A., Chikaraishi, D. M., et al. (1997). Induction of tyrosine hydroxylase protein and a transgene containing tyrosine hydroxylase 5′ flanking sequences by stress in mouse adrenal gland. J. Neurochem. 68(3):1071–1077.

    Article  PubMed  CAS  Google Scholar 

  • Osterhout, C. A., Sterling, C. R., et al. (2005). Induction of tyrosine hydroxylase in the locus coeruleus of transgenic mice in response to stress or nicotine treatment: lack of activation of tyrosine hydroxylase promoter activity. J. Neurochem. 94(3):731–741.

    Article  PubMed  CAS  Google Scholar 

  • Pariante, C. M., and Miller, A. H. (2001). Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatr. 49(5):391–404.

    Article  CAS  Google Scholar 

  • Piazza, P. V., and Le Moal, M. (1998). The role of stress in drug self-administration. Trends Pharmacol. Sci. 19(2):67–74.

    Article  PubMed  CAS  Google Scholar 

  • Piech-Dumas, K. M., and Tank, A. W. (1999). CREB mediates the cAMP-responsiveness of the tyrosine hydroxylase gene: use of an antisense RNA strategy to produce CREB-deficient PC12 cell lines. Brain Res. Mol. Brain Res. 70(2):219–230.

    Article  PubMed  CAS  Google Scholar 

  • Sabban, E. L., Hiremagalur, B., et al. (1995). Molecular biology of stress-elicited induction of catecholamine biosynthetic enzymes. Ann. NY Acad. Sci. 771:327–338.

    PubMed  CAS  Google Scholar 

  • Sabban, E. L., Kvetnansky, R. (2001). Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci. 24(2):91–98.

    Article  PubMed  CAS  Google Scholar 

  • Selye, H. (1975). The Stress of Life, McGraw Hill, New York.

    Google Scholar 

  • Serova, L. I., Nankova, B. B., et al. (1999). Heightened transcription for enzymes involved in norepinephrine biosynthesis in the rat locus coeruleus by immobilization stress. Biol. Psychiatr. 45(7):853–862.

    Article  CAS  Google Scholar 

  • Shekhar, A., Truitt, W., et al. (2005). Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8(4):209–219.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, Y., Sugama, S., et al. (2004). Cell-type specific signal transduction and gene regulation via mitogen-activated protein kinase pathway in catecholaminergic neurons by restraint stress. Neuroscience 129(3):831–839.

    Article  PubMed  CAS  Google Scholar 

  • Silva, A. J., Kogan, J. H., et al. (1998). CREB and memory. Annu. Rev. Neurosci. 21:127–148.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, T., Adler, S. (1999). Work, stress, and disability. Int. J. Law Psychiatr. 22(5–6):417–424.

    Article  CAS  Google Scholar 

  • Valentino, R. J., Foote, S. L., et al. (1993). The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann. NY Acad. Sci. 697:173–188.

    PubMed  CAS  Google Scholar 

  • Viskupic, E., Kvetnansky, R., et al. (1994). Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis. J. Neurochem. 63(3):808–814.

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt, J. L., and Duman, R. S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16(3):239–249.

    Article  PubMed  CAS  Google Scholar 

  • Wong, M. L., Kling, M. A., et al. (2000). Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc. Natl. Acad. Sci. USA 97(1):325–330.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge support of grants NS28869 and NS044218 from the National Institutes of Health, N00014-02-1-0325 from Office of Naval Research, and Slovak-US Grant 002/2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther L. Sabban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabban, E.L., Liu, X., Serova, L. et al. Stress Triggered Changes in Gene Expression in Adrenal Medulla: Transcriptional Responses to Acute and Chronic Stress. Cell Mol Neurobiol 26, 843–854 (2006). https://doi.org/10.1007/s10571-006-9069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9069-1

KEY WORDS:

Navigation