Skip to main content

Advertisement

Log in

Subventricular Zone Under the Neuroinflammatory Stress and Parkinson’s Disease

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This review summarizes the effects of neuroinflammatory stress on the subventricular zone (SVZ), where new neurons are constitutively produced in the adult brain, especially focusing on the relation with Parkinson’s disease (PD), because the SVZ is under the control of dopaminergic afferents from the substantia nigra (SN). In Lewy bodies-positive-PD, microglia is known to phagocytoze aggregated α-synuclein, resulting in the release of inflammatory cytokines. The neurogenesis in the SVZ should be affected in PD brain by the neuroinflammatory process. The administration of lipopolysaccaharide is available as an alternative model for microglia-induced loss of dopaminergic neurons and also the impairment of stem cell maintenance. Therefore, the research on the neuroinflammatory process in the SVZ gives us a hint to prevent the outbreak of PD or at least slow the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnisalo P, Kim CH, Lee JW, Perlmann T (2002) Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J Biol Chem 277:35118–35123

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A (1997) Mechanism of migration of olfactory bulb interneurons. Semin Cell Dev Biol 8:207–221

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, García-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  PubMed  CAS  Google Scholar 

  • Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20:575–579

    Article  PubMed  Google Scholar 

  • Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, Mangelsdorf DJ, Evans RM (2005) A Nuclear receptor atlas: macrophage activation. Mol Endocrinol 19:2466–2477

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  • Benicky J, Sánchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, Leng Y, Chuang DM, Saavedra JM (2011) Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 36:857–870

    Article  PubMed  CAS  Google Scholar 

  • Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated α-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    Article  PubMed  CAS  Google Scholar 

  • Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    Article  PubMed  CAS  Google Scholar 

  • Bonow RH, Aid S, Zhang Y, Becker KG, Bosetti F (2009) The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics J 9:116–126

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Sastre M, Del Tredici K (2007) Development of α-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114:231–241

    Article  PubMed  CAS  Google Scholar 

  • Breder CD, Ghayur T, Klug C, Huginin M, Yasuda K, Teng M, Saper CB (1994) Regional induction of tumor necrosis factor α expression in the mouse brain after systemic lipopolysaccharide administration. Proc Natl Acad Sci USA 91:11393–11397

    Article  PubMed  CAS  Google Scholar 

  • Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160

    Article  PubMed  CAS  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  PubMed  CAS  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796

    Article  PubMed  CAS  Google Scholar 

  • Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58:120–129

    Article  PubMed  CAS  Google Scholar 

  • Coronas V, Bantubungi K, Fombonne J, Krantic S, Schiffmann SN, Roger M (2004) Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J Neurochem 91:1292–1301

    Article  PubMed  CAS  Google Scholar 

  • Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91:1161–1218

    Article  PubMed  CAS  Google Scholar 

  • Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P, Busca G, Lambertenghi DG, Polli E, Nappi G, Silani V, Blandini F (2010) Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 1311:12–27

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    Article  PubMed  CAS  Google Scholar 

  • Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of α-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232

    Article  PubMed  CAS  Google Scholar 

  • Diaz J, Ridray S, Mignon V, Griffon N, Schwartz JC, Sokoloff P (1997) Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci 17:4282–4292

    PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Doi Y, Oki S, Ozawa T, Hohjoh H, Miyake S, Yamamura T (1997) Orphan nuclear receptor NR4A2 expressed in T cells from multiple sclerosis mediates production of inflammatory cytokines. Proc Natl Acad Sci USA 105:8381–8386

    Article  Google Scholar 

  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100:13632–13637

    Article  PubMed  CAS  Google Scholar 

  • Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  • Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, Hartley M, Treviño I, O’Brien DE, Casey B, Goldberg MS, Tansey MG (2008) Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci 28:10825–10834

    Article  PubMed  CAS  Google Scholar 

  • Freundlieb N, Francois C, Tande D, Oertel WH, Hirsch EC, Hoglinger GU (2006) Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci 26:2321–2325

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  PubMed  CAS  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  CAS  Google Scholar 

  • Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, Lledo PM (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA 97:1823–1828

    Article  PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  • Goedert M (1999) Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and α-synucleinopathies. Philos Trans R Soc Lond B 354:1101–1118

    Article  CAS  Google Scholar 

  • Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 7:492–501

    Article  CAS  Google Scholar 

  • Greenamyre JT, Sherer TB, Betarbet R, Panov AV (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141

    Article  PubMed  CAS  Google Scholar 

  • Gritti A, Bonfanti L, Doetsch F, Caillé I, Alvarez-Buylla A, Lim DA, Galli R, Verdugo JM, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445

    PubMed  CAS  Google Scholar 

  • Hagg T (2005) Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci 28:589–595

    Article  PubMed  CAS  Google Scholar 

  • Hawkes CH, Shephard BC, Daniel SE (1997) Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:436–446

    Article  PubMed  CAS  Google Scholar 

  • Hayley S, Lacosta S, Merali Z, van Rooijen N, Anisman H (2001) Central monoamine and plasma corticosterone changes induced by a bacterial endotoxin: sensitization and cross-sensitization effects. Eur J Neurosci 13:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44:S115–S120

    PubMed  CAS  Google Scholar 

  • Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  CAS  Google Scholar 

  • Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Iwase K, Miyanaka K, Shimizu A, Nagasaki A, Gotoh T, Mori M, Takiguchi M (2000) Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J Biol Chem 275:11929–11933

    Article  PubMed  CAS  Google Scholar 

  • Jankovski A, Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371:376–396

    Article  PubMed  CAS  Google Scholar 

  • Kaneko YS, Ikemoto K, Mori K, Nakashima A, Nagatsu I, Ota A (2001) Expression of GTP cyclohydrolase I in murine locus ceruleus is enhanced by peripheral administration of lipopolysaccharide. Brain Res 890:203–210

    Article  PubMed  CAS  Google Scholar 

  • Kaneko YS, Nakashima A, Mori K, Nagatsu T, Nagatsu I, Ota A (2009) Lipopolysaccharide extends the lifespan of mouse primary-cultured microglia. Brain Res 1279:9–20

    Article  PubMed  CAS  Google Scholar 

  • Kaul M (2008) HIV’s double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci 13:2484–2494

    Article  PubMed  CAS  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    PubMed  CAS  Google Scholar 

  • Kim Y, Wang WZ, Comte I, Pastrana E, Tran PB, Brown J, Miller RJ, Doetsch F, Molnar Z, Szele FG (2010) Dopamine stimulation of postnatal murine subventricular zone neurogenesis via the D3 receptor. J Neurochem 114:750–760

    Article  PubMed  CAS  Google Scholar 

  • Korten JJ, Meulstee J (1980) Olfactory disturbances in Parkinsonism. Clin Neurol Neurosurg 82:113–118

    Article  PubMed  CAS  Google Scholar 

  • Krathwohl MD, Kaiser JL (2004a) Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22:109–118

    Article  PubMed  CAS  Google Scholar 

  • Krathwohl MD, Kaiser JL (2004b) HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190:216–226

    Article  PubMed  CAS  Google Scholar 

  • Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  Google Scholar 

  • Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann NY Acad Sci 1074:31–41

    Article  PubMed  CAS  Google Scholar 

  • Lacosta S, Merali Z, Anisman H (1999) Behavioral and neurochemical consequences of lipopolysaccharide in mice: anxiogenic-like effects. Brain Res 818:291–303

    Article  PubMed  CAS  Google Scholar 

  • Lacroix S, Feinstein D, Rivest S (1998) The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 8:625–640

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33:85–89

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ (2008) Origins and effects of extracellular α-synuclein: implications in Parkinson’s disease. J Mol Neurosci 34:17–22

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Rakic P (1995) Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe. J Comp Neurol 360:393–402

    Article  PubMed  CAS  Google Scholar 

  • Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease. Neurology 48:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Lin HI, Tzeng SF (2005) Tumor necrosis factor-α and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res 1054:152–158

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28:248–254

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lundvig D, Lindersson E, Jensen PH (2005) Pathogenic effects of α-synuclein aggregation. Brain Res Mol Brain Res 134:3–17

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  • Maira M, Martens C, Philips A, Drouin J (1999) Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol 19:7549–7557

    PubMed  CAS  Google Scholar 

  • Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein—a neuron-specific protein localized to the nucleus and presynaptic nerve-terminal. J Neurosci 8:2804–2815

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • McLean JH, Shipley MT, Nickell WT, Aston-Jones G, Reyher CK (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J Comp Neurol 285:339–349

    Article  PubMed  CAS  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107:335–341

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Guaza C (1996) Endotoxin administration induced differential neurochemical activation of the rat brain stem nuclei. Brain Res Bull 40:151–156

    Article  PubMed  CAS  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kaneko YS, Nakashima A, Nagatsu I, Takahashi H, Ota A (2005) Peripheral lipopolysaccharide induces apoptosis in the murine olfactory bulb. Brain Res 1039:116–129

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kaneko YS, Nakashima A, Nagatsu T, Nagatsu I, Ota A (2010) Peripherally injected lipopolysaccharide induces apoptosis in the subventricular zone of young adult mice. Neurosci Lett 481:126–130

    Article  PubMed  CAS  Google Scholar 

  • Nadeau S, Rivest S (1999) Regulation of the gene encoding tumor necrosis factor α (TNF-α) in the rat brain and pituitary in response in different models of systemic immune challenge. J Neuropathol Exp Neurol 58:61–77

    Article  PubMed  CAS  Google Scholar 

  • Nadeau S, Rivest S (2000) Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and NF-κB activity in the brain during endotoxemia. J Neurosci 20:3456–3468

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016

    Article  PubMed  CAS  Google Scholar 

  • Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone V, Hökfelt T (1993) Distributions of mRNAs for α2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594

    Article  PubMed  CAS  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by MPP+, a metabolite of the neurotoxin MPTP. Life Sci 36:2503–2508

    Article  PubMed  CAS  Google Scholar 

  • O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci USA 106:8754–8759

    Article  PubMed  Google Scholar 

  • Ohtani N, Goto T, Waeber C, Bhide PG (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23:2840–2850

    PubMed  CAS  Google Scholar 

  • Palsson-McDermott EM, O’Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, toll-like receptor-4. Immunology 113:153–162

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, Jou I, Kim J, Park SM (2009) On the mechanism of internalization of α-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem 110:400–411

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Castrillo A, Chen M, Hoffmann A, Tontonoz P (2005) Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J Biol Chem 280:29256–29262

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Whitney N, Wu Y, Tian C, Dou H, Zhou Y, Zheng J (2008) HIV-1–infected and/or immune-activated macrophage-secreted TNF-α affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 56:903–916

    Article  PubMed  Google Scholar 

  • Pieribone VA, Nicholas AP, Dagerlind A, Hökfelt T (1994) Distribution of α1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci 14:4252–4268

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Quan N, Whiteside M, Herkenham M (1997a) Time course and localization patterns of interleukin-1β mRNA expression in the brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83:281–293

    Article  Google Scholar 

  • Quan N, Whiteside M, Kim L, Herkenham M (1997b) Induction of inhibitory factor κBα mRNA in the central nervous system after peripheral lipopolysaccharide administration: an in situ hybridization histochemistry study in the rat. Proc Natl Acad Sci USA 94:10985–10990

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P, Banerjee R, Gendelman HE (2008) Nitrated α-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol 3:59–74

    Article  PubMed  Google Scholar 

  • Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17:13–19

    Article  PubMed  CAS  Google Scholar 

  • Rochefort C, Gheusi G, Vincent JD, Lledo PM (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22:2679–2689

    PubMed  CAS  Google Scholar 

  • Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Roodveldt C, Christodoulou J, Dobson CM (2008) Immunological features of α-synuclein in Parkinson’s disease. J Cell Mol Med 12:1820–1829

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59

    Article  PubMed  CAS  Google Scholar 

  • Shipley MT, Halloran FJ, de la Torre J (1985) Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res 329:294–299

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Goedert M (2000) The α-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann NY Acad Sci 920:16–27

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998a) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998b) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Hashimoto M, Mallory M, Sundsumo M, Hansen L, Masliah E (2000) C-terminal α-synuclein immunoreactivity in structures other than Lewy bodies in neurodegenerative disorders. Acta Neuropathol 99:296–304

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR (1996) Distribution of α2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372:111–134

    Article  PubMed  CAS  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  PubMed  CAS  Google Scholar 

  • Tolosa E, Poewe W (2009) Premotor Parkinson disease. Neurology 72:S1

    Article  PubMed  Google Scholar 

  • Tonelli LH, Maeda S, Rapp KL, Sternberg EM (2003) Differential induction of interleukin-Iβ mRNA in the brain parenchyma of Lewis and Fischer rats after peripheral injection of lipopolysaccharides. J Neuroimmunol 140:126–136

    Article  PubMed  CAS  Google Scholar 

  • Tran TA, Nguyen AD, Chang J, Goldberg MS, Lee JK, Tansey MG (2011) Lipopolysaccharide and tumor necrosis factor regulate Parkin expression via nuclear factor-kappa B. PLoS One 6:e23660

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM (2003) Parkinson’s disease and related α-synucleinopathies are brain amyloidoses. Ann NY Acad Sci 991:107–110

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  PubMed  CAS  Google Scholar 

  • Vallières L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492

    PubMed  Google Scholar 

  • Van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D receptor stimulation. Eur J Neurosci 19:2377–2387

    Article  PubMed  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H (1997) NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci Lett 239:45–48

    Article  PubMed  CAS  Google Scholar 

  • Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65:2372–2384

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560

    Article  PubMed  CAS  Google Scholar 

  • Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type α-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    PubMed  CAS  Google Scholar 

  • Winner B, Geyer M, Couillard-Despres S, Aigner R, Bogdahn U, Aigner L, Kuhn G, Winkler J (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197:113–121

    Article  PubMed  CAS  Google Scholar 

  • Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J (2008) Mutant α-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29:913–925

    Article  PubMed  CAS  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  • Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250

    Article  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong JS, Zhang J (2005) Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, K., Kaneko, Y.S., Nakashima, A. et al. Subventricular Zone Under the Neuroinflammatory Stress and Parkinson’s Disease. Cell Mol Neurobiol 32, 777–785 (2012). https://doi.org/10.1007/s10571-011-9783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9783-1

Keywords

Navigation