Skip to main content

Advertisement

Log in

Nicotine-induced Ca2+-myristoyl Switch of Neuronal Ca2+ Sensor VILIP-1 in Hippocampal Neurons: A Possible Crosstalk Mechanism for Nicotinic Receptors

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Visinin-like protein (VILIP-1) belongs to the neuronal Ca2+ sensor family of EF-hand Ca2+-binding proteins that regulate a variety of Ca2+-dependent signal transduction processes in neurons. It is an interaction partner of α4β2 nicotinic acetylcholine receptor (nAChR) and increases surface expression level and agonist sensitivity of the receptor in oocytes. Nicotine stimulation of nicotinic receptors has been reported to lead to an increase in intracellular Ca2+ concentration by Ca2+-permeable nAChRs, which in turn might lead to activation of VILIP-1, by a mechanism described as the Ca2+-myristoyl switch. It has been postulated that this will lead to co-localization of the proteins at cell membranes, where VILIP-1 can influence functional activity of α4-containing nAChRs.

In order to test this hypothesis we have investigated whether a nicotine-induced and reversible Ca2+-myristoyl switch of VILIP-1 exists in primary hippocampal neurons and whether pharmacological agents, such as antagonist specific for distinct nAChRs, can interfere with the Ca2+-dependent membrane localization of VILIP-1.

Here we report, that only α7- but not α4-containing nAChRs are able to elicit a Ca2+-dependent and reversible membrane-translocation of VILIP-1 in interneurons as revealed by employing the specific receptor antagonists dihydro-beta-erythroidine and methylallylaconitine.

The nAChRs are associated with processes of synaptic plasticity in hippocampal neurons and they have been implicated in the pathology of CNS disorders, including Alzheimer’s disease and schizophrenia. VILIP-1 might provide a novel functional crosstalk between α4- and α7-containing nAChRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM, Maelicke A (1997) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136

    PubMed  CAS  Google Scholar 

  • Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455–1473

    PubMed  CAS  Google Scholar 

  • Alkondon M, Albuquerque EX (1995) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons III. Agonist actions of the novel alkaloid epibatidine and analysis of type II current. J Pharmacol Exp Ther 274:771–782

    PubMed  CAS  Google Scholar 

  • Alkondon M, Albuquerque EX (2002) A non-alpha7 nicotinic acetylcholine receptor modulates excitatory input to hippocampal CA1 interneurons. J Neurophysiol 87:1651–1654

    Google Scholar 

  • Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120

    Article  PubMed  CAS  Google Scholar 

  • Alkondon M, Reinhardt S, Lobron C, Hermsen B, Maelicke A, Albuquerque EX (1994) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons II. The rundown and inward rectification of agonist-elicited whole-cell currents and identification of receptor subunits by in situ hybridization. J Pharmacol Exp Ther 271:494–506

    PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Albuquerque EX (1996) Mapping the location of functional nicotinic and gammaaminobutyric acidA receptors on hippocampal neurons. J Pharmacol Exp Ther 279:1491–1506

    PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (1999) Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. J Neurosci 19:2693–2705

    PubMed  CAS  Google Scholar 

  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium myristoyl switches. Nature 389:198–202

    Article  PubMed  CAS  Google Scholar 

  • Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29:83–120

    Article  PubMed  CAS  Google Scholar 

  • Berg DK, Conroy WG, Liu Z, Zago WM (2006) Nicotinic signal transduction machinery. J Mol Neurosci 30:149–152

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED, Braunewell KH (1999) Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP–1 and VILIP-3) in human brain. J Neurocytol 28:655–662

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HG, Braunewell KH, Spilker C, Danos P, Baumann B, Funke S, Diekmann S, Gundelfinger ED, Bogerts B (2002) Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia. Neuroreport 13:393–396

    Article  PubMed  CAS  Google Scholar 

  • Bernstein HG, Becker A, Keilhoff G, Spilker C, Gorczyca WA, Braunewell KH, Grecksch G (2003) Brain region-specific changes in the expression of calcium sensor proteins after repeated applications of ketamine to rats. Neurosci Lett 339:95–98

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Galzi JL, Devillers-Thiéry A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci USA 90:6971–6975

    Article  PubMed  CAS  Google Scholar 

  • Brackmann M, Zhao C, Kuhl D, Manahan-Vaughan D, Braunewell KH (2004) MGluRs regulate the expression of neuronal calcium sensor proteins NCS–1 and VILIP-1 and the immediate early gene arg3.1/arc in the hippocampus in vivo. Biochem Biophys Res Commun 322:1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Brackmann M, Schuchmann S, Anand R, Braunewell KH (2005) Neuronal calcium sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J Cell Sci 118:2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH (2005) The darker side of calcium signaling by neuronal calcium-sensor proteins: from Alzheimer’s disease to cancer. Trends Pharmacol Sci 26:345–351

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH, Gundelfinger ED (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium binding proteins in search of a function. Cell Tissue Res 295:1–12

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH, Spilker C, Behnisch T, Gundelfinger ED (1997) The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: amino-terminal myristoylation determines functional activity. J Neurochem 68:2129–2139

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH, Brackmann M, Spilker M, Schaupp C, Anand R, Gundelfinger ED (2001a) Intracellular neuronal calcium sensor (NCS) protein VILIP-1 modulates cGMP signalling pathways in transfected neural cells and cerebellar granule neurones. J Neurochem 78:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Braunewell K, Riederer P, Spilker C, Gundelfinger ED, Bogerts B, Bernstein HG (2001b) Abnormal localization of two neuronal calcium sensor proteins, visinin-like proteins (vilips)-1 and -3, in neocortical brain areas of Alzheimer disease patients. Dement Geriatr Cogn Disord 12:110–116

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH, Brackmann M, Manahan-Vaughan D (2003) Group I mGluRs regulate the expression of the intracellular neuronal calcium sensor protein VILIP-1 in vitro and in vivo: possible implications for mGluR-dependent hippocampal plasticity? Neuropharmacology 44:707–715

    Article  PubMed  CAS  Google Scholar 

  • Braunewell K-H, Brackmann M, Hoffmann A (2006) VILIP-1, a novel regulator of the guanylate cyclase transduction system in neurons. CBP 1:3–7

    Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal calcium signalling. Nat Rev Neurosci 8:182–193

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of calcium-binding proteins. Biochem J 353:1–12

    Article  PubMed  CAS  Google Scholar 

  • Castro NG, Albuquerque EX (1995) alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J 68:516–524

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Sumikawa K (2001) Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus. Brain Res 894:347–353

    Article  PubMed  CAS  Google Scholar 

  • Gerzanich V, Anand R, Lindstrom J (1994) Homomers of alpha 8 and alpha 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. Mol Pharmacol 45:212–220

    PubMed  CAS  Google Scholar 

  • Gierke P, Zhao CJ, Bernstein HG, Noack C, Anand R, Heinemann U, Braunewell KH (2008) Implication of neuronal Ca2+-sensor protein VILIP-1 in the glutamate hypothesis of schizophrenia. Neurobiol Dis 32:162–175

    Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  PubMed  CAS  Google Scholar 

  • Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors, from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46

    Article  PubMed  CAS  Google Scholar 

  • Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141

    Article  PubMed  CAS  Google Scholar 

  • Lenz SE, Zuschratter W, Gundelfinger ED (1996) Distribution of visinin-like protein (VILIP) immunoreactivity in the hippocampus of the Mongolian gerbil (Meriones unguiculatus). Neurosci Lett 206:133–136

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Jeanclos EM, Treuil M, Braunewell KH, Gundelfinger ED, Anand R (2002a) The calcium sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of the alpha 4beta 2 nicotinic acetylcholine receptor. J Biol Chem 277:41872–41878

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Braunewell KH, Gundelfinger ED, Anand R (2002b) Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1. Biochem Biophys Res Commun 296:827–832

    Article  PubMed  CAS  Google Scholar 

  • Mahloogi H, Gonzalez-Guerrico AM, LopezDe Cicco R, Bassi DE, Goodrow T, Braunewell K-H, Klein-Szanto AJ (2003) Overexpression of the calcium sensor visinin-like protein-1 leads to a cAMP mediated decrease of in vivo and in vitro growth and invasiveness of squamous cell carcinoma cells. Cancer Res 63:4997–5004

    PubMed  CAS  Google Scholar 

  • Maloney JA, Tsygankova OM, Yang L, Li Q, Szot A, Baysal K, Williamson JR (1999) Activation of ERK by Ca2+ store depletion in rat liver epithelial cells. Am J Physiol 276:C221–C230

    PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, Braunewell KH (2005) The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity. Cereb Cortex 15:1703–1713

    Article  PubMed  Google Scholar 

  • McGehee DS (2002) Nicotinic receptors and hippocampal synaptic plasticity: it’s all in the timing. Trends Neurosci 25:171–172

    Article  PubMed  CAS  Google Scholar 

  • Nef P (1996) Neuronal calcium sensors. In: Celio MR (ed) Guidebook to the calcium-binding proteins. Oxford University Press, New York, p 94

  • Paterlini M, Revilla V, Grant AL, Wisden W (2000) Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 99:205–216

    Article  PubMed  CAS  Google Scholar 

  • Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53:457–478

    Article  PubMed  CAS  Google Scholar 

  • Ragozzino D, Barabino B, Fucile S, Eusebi F (1998) Ca2+ permeability of mouse and chick nicotinic acetylcholine receptors expressed in transiently transfected human cells. J Physiol 507:749–757

    Article  PubMed  CAS  Google Scholar 

  • Schnurra I, Bernstein HG, Riederer P, Braunewell KH (2001) The neuronal calcium sensor protein VILIP-1 is associated with amyloid plaques and extracellular tangles in Alzheimer’s disease and promotes cell death and tau phosphorylation in vitro: a link between calcium sensors and Alzheimer’s disease? Neurobiol Dis 8:900–909

    Article  PubMed  CAS  Google Scholar 

  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  Google Scholar 

  • Spilker C, Braunewell KH (2003) Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Mol Cell Neurosci 24:766–778

    Article  PubMed  CAS  Google Scholar 

  • Spilker C, Dresbach T, Braunewell KH (2002) Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. J Neurosci 22:7331–7339

    PubMed  CAS  Google Scholar 

  • Teruel MN, Meyer T (2000) Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103:181–184

    Google Scholar 

  • Zhao C, Braunewell KH (2008) Expression of the neuronal calcium sensor visinin-like protein-1 in the rat hippocampus. Neuroscience 153:1202–1212

    Article  PubMed  CAS  Google Scholar 

  • Zozulya S, Stryer L (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A 89:11569–11573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted within the framework of the national priority program (Schwerpunktprogram) SPP1226 Nicotine: Molecular and physiological mechanisms in the central nervous system (www.nicotine-research.com) funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, grant Br1579/9-1) and DFG grant (Br1579/8-1) to K·H.B, and from the National Institutes of Health (DA 019675) and NARSAD (to R.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Braunewell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Anand, R. & Braunewell, KH. Nicotine-induced Ca2+-myristoyl Switch of Neuronal Ca2+ Sensor VILIP-1 in Hippocampal Neurons: A Possible Crosstalk Mechanism for Nicotinic Receptors. Cell Mol Neurobiol 29, 273–286 (2009). https://doi.org/10.1007/s10571-008-9320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9320-z

Keywords

Navigation