Skip to main content

Advertisement

Log in

Ultra-Fast Biosensors and Multi-Photon Microscopy in the Future of Brain Studies

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

The direct, highly selective and sensitive real-time imaging of neuro- and biochemical mediators is the only way to clarify precisely the chemistry of the brain and to discover the key molecular targets involved in regulation of brain homeostasis. To realize that, we need: high-speed deep-tissue imaging techniques with high spatial and temporal resolution; and ultra-fast and highly selective molecular sensors, giving a possibility to monitor target molecules directly in their physiological environment; in addition, these molecular sensors have to be comparatively small and permeable for blood-brain barrier, to be applicable in brain studies. The present view accents on the perspectives for development of direct approach for investigation of function/flow coupling phenomenon in the brain, based on the current progress in development of ultra-fast molecular sensors for direct visualization of biochemical mediators (e.g., nitric oxide, Ca ions), and high-speed two-photon/multi-photon deep-tissue imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  • Ances, B. M. (2004). Coupling of changes in cerebral blood flow with neuronal activity: What must initially dip must come back up. J. Cereb. Blood Flow Metab. 24:1–6.

    Article  PubMed  Google Scholar 

  • Bakalova, R., Matsuura, T., and Kanno, I. (2002). The cyclooxygenase inhibitors Indomethacin and Rofecoxib reduce regional cerebral blood flow evoked by somatosensory stimulation in rats. Exp. Biol. Med. (Maywood) 227:465–473.

    CAS  Google Scholar 

  • Chaigneau, E., Oheim, M., Audinat, E., and Charpac, S. (2003). Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. U. S. A. 100:13081–13086.

    Article  PubMed  CAS  Google Scholar 

  • Chalon, S., Vancassel, S., Zimmer, L., Guilloteau, D., and Durand, G. (2001). Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids 36:937–944.

    Article  PubMed  CAS  Google Scholar 

  • Dale, N., Hatz, S., Tian, F., and Llaudet, E. (2005). Listening to the brain microelectrode biosensors for neurochemicals. Trends Biotechnol. 23:420–428.

    Article  PubMed  CAS  Google Scholar 

  • Fan, C., Plaxco, K. W., and Heeger, A. J. (2005). Biosensors based on binding-modulated donor–acceptor distance. Trends Biotechnol. 23:186–192.

    Article  PubMed  CAS  Google Scholar 

  • Girouard, H., and Iadecola, C. (2006). Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100:328–335.

    Article  PubMed  CAS  Google Scholar 

  • Hirase, H. (2005). A multi-photon window onto neuronal-glial-vascular communication. Trends Neurosci. 28:217–219.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5:347–360.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, V., Bakalova, R., Koynova, G., Tyurin, V., Serbinova, E., Petkov, V. V., Petkov, V. D., Staneva, D., and Packer, L. (1992). Antioxidant protection in the brain against oxidative stress. In Packer, L., Prilipko, L., and Christen, Y. (eds.), Free Radicals in the Brain: Aging, Neurological and Mental Disorders, Springer Verlag, Berlin, pp. 49–61.

    Google Scholar 

  • Lauritzen, M. (2005). Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat. Rev. Neurosci. 6:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Lim, M. H., Xu, D., and Lippard, S. J. (2006). Vizualization of nitric oxide in living cells by a cupper-based fluorescent probe. Nat. Chem. Biol. 2:357–380.

    Article  Google Scholar 

  • Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G. (1999). Energy demand. Science 22:496–497.

    Article  Google Scholar 

  • O’Neill, R. D., Lowry, J. P., and Mas, M. (1998). Monitoring brain chemistry in vivo: Voltametric techniques, sensors, and behavioral applications. Crit. Rev. Neurobiol. 12:69–127.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W., Horrocks, L. A., and Farooqui, A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Brain Res. Rev. 52:201–243.

    Article  CAS  Google Scholar 

  • Simard, M., Arcuino, G., Takano, T., Liu, Q. S., and Nedergaard, M. (2003). Signaling at the gliovascular interface. J. Neurosci. 23:9254–9262.

    PubMed  CAS  Google Scholar 

  • Solfrizzi, V., D’Introno, A., Colacicco, A. M., Capurso, C., Del Parigi, A., Capurso, S., Gadaleta, A., Capurso, A., and Panza, F. (2005). Dietary fatty acids intake: Possible role in cognitive decline and dementia. Exp. Gerontol. 40:257–270.

    Article  PubMed  CAS  Google Scholar 

  • Strowbridge, B. W. (2006). Imaging activity in brain cells: Deconvultion clears the haze. Nat. Methods 3:344–346.

    Article  PubMed  CAS  Google Scholar 

  • Takano, T., Tian, G-F., Peng, W., Lou, N., Libionka, W., Han, X., and Nedergaard, M. (2006). Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9:260–267.

    Article  PubMed  CAS  Google Scholar 

  • Voltera, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continuous. Nat. Rev. Neurosci. 6:626–640.

    Article  Google Scholar 

  • Wang, X., Lou, N., Xu, Q., Tian, G-F., Peng, W. G., Han, X., Kang, J., Takano, T., and Nedergaard, M. (2006). Atrocytic Ca2 + signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9:816–823.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda, S., Rabinovitz, S., Carasso, R. L., and Mostofsky, D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    Article  PubMed  CAS  Google Scholar 

  • Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K-A., Pozzan, T., and Carmignoto, G. (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6:43–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumiana Bakalova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakalova, R. Ultra-Fast Biosensors and Multi-Photon Microscopy in the Future of Brain Studies. Cell Mol Neurobiol 27, 359–365 (2007). https://doi.org/10.1007/s10571-006-9129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9129-6

KEY WORDS

Navigation