Skip to main content
Log in

Endothelin Signaling Pathways in Rat Adrenal Medulla

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

1. We further characterized the effect of endothelins (ETs) on receptor-mediated phosphoinositide (PI) turnover, nitric oxide synthase (NOS) activation, and cGMP formation in whole rat adrenal medulla.

2. The PI hydrolysis was assessed as accumulation of inositol monophosphates (InsP1) in the presence of 10 mM LiCl in whole tissue and the analysis of inositol-1-phosphate by Dowex anion exchange chromatography. NOS activity was assayed by monitoring the conversion of radiolabeled L-arginine to L-citrulline. Cyclic GMP formation was assessed as accumulation of cGMP in whole tissue in the presence of phosphodiesterase inhibition, and the amount of cGMP formed was determined by radioimmuno-antibody procedure.

3. ET-1 and ET-3 increased PI turnover by 30% in whole adrenal medulla prelabeled with [3H] myoinositol. Both ETs isoforms, at equimolar doses, increased NOS activity and cGMP levels in similar degree. The selective ETB receptor agonist, IRL-1620, also increased cGMP formation, mimicking the effects of ETs, while IRL-1620 did not alter the PI metabolism. ETs-induced InsP1 accumulation and cGMP was dependent on extracellular calcium. The effect of ETs on PI turnover was inhibited by neomycin. The L-arginine analogue, N-nitro-L-arginine (L-NAME), and two inhibitors of soluble guanylyl cyclase, methylene blue and ODQ, significantly inhibited the increase in cGMP production induced by ETs or IRL-1620. The selective ETA receptor antagonist, BQ 123, inhibited the ETs-induced increase in PI turnover, while the selective ETB receptor antagonist, BQ 788, was ineffective. Likewise, BQ 788, significantly inhibited ET-1- or ET-3-induced NOS activation and cGMP generation but not ETs-induced InsP1 accumulation.

4. Our data indicate that stimulation of PI turnover and NO-induced cGMP generation constitutes ETs signaling pathways in rat adrenal medulla. The former action is mediated through activation of ETA receptor, while the latter through the activation of ETB receptor. These results support the role of endothelins in the regulation of adrenal medulla function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  • Afework, M., Tomlinson, A., Belai, A., and Burnstock, G. (1992). Colocalization of nitric oxide synthase and NADPH-diaphorase in rat adrenal gland. Neuroreport. 3:893–896.

    Article  PubMed  CAS  Google Scholar 

  • Amico, J. A., Clarke, M. R., Watson, C. G., Kim, N. B., Bononi, P. L., Crowley, R. S., and Horwitz, M. J. (1993). Endothelin-1 gene expression in human pheochromocytoma. J. Lab. Clin. Med. 122:667–672.

    PubMed  CAS  Google Scholar 

  • Arai, H., Hori, S., Aramori, I., Ohkubo, H., and Nakanishi, S. (1990). Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732.

    Article  PubMed  CAS  Google Scholar 

  • Belloni, A. S., Galindo, P. Y., Markowska, A., Andreis, P. G., Meneghelli, V., Malendowicz, L. K., and Nussdorfer, G. G. (1997). Distribution and functional significance of the endothelin receptor subtypes in the rat adrenal gland. Cell Tissue Res. 288:345–352.

    Article  PubMed  CAS  Google Scholar 

  • Boarder, M. R., and Marriot, D. B. (1989). Characterization of endothelin-1 stimulation of catecholamines release from adrenal chromaffin cells. J. Cardiovasc. Pharmacol. 13:S223–S224.

    Article  PubMed  CAS  Google Scholar 

  • Botting, R. M., and Vane J. R. (1990). Endothelins: Potent releasers of prostacyclin and EDRF. Pol. J. Pharmacol. Pharm. 42:203–218.

    PubMed  CAS  Google Scholar 

  • Bredt, D. S., and Snyder, S. H. (1990). Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87:682–685.

    Article  PubMed  CAS  Google Scholar 

  • Bychkov, R., Glowinski, J., and Giaume, C. (2001). Sequential and opposite regulation of two outward K+ currents by ET-1 in cultured striatal astrocytes. Am. J. Physiol. Cell. Physiol. 281:C1373–C1384.

    PubMed  CAS  Google Scholar 

  • Cameron, L., Kapas, S., and Hinson, J. P. (1994). Endothelin-1 release from the isolated perfused rat adrenal gland is elevated acutely in response to increasing flow rates and ACTH(1–24). Biochem. Biophys. Res. Comm. 202:873–879.

    Article  PubMed  CAS  Google Scholar 

  • Cozza, E. N., Gomez-Sanchez, C. E., Foecking, M. F., and Chiou, S. J. (1989). Endothelin binding to cultured calf adrenal zona glomerulosa cells and stimulation of aldosterone secretion. J. Clin. Invest. 84:1032–1035.

    PubMed  CAS  Google Scholar 

  • Chau, L. Y., Lin, T. A., Chang, W. T., Chen, C. H., Shue, M. J., Hsu Y. S., Tsai, W. H., and Sun, G. Y. (1993). Endothelin-mediated calcium response and inositol 1,4,5,-trisphosphate release in neuroblastoma-glioma hybrid cells (NG108–15): Cross talk with ATP and bradykinin. J. Neurochem. 60:454–46.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, D. M., Lin, W. W., Lee, C. Y. (1991). Endothelin-induced activation of phosphoinositide turnover, calcium mobilization, and transmitter release in cultured neurons and neurally related cell types. J. Cardiovasc. Pharmacol. 17:S85–S88.

    PubMed  CAS  Google Scholar 

  • Edwards, R. M., Pullen, M., and Nambi, P. (1992). Activation of endothelin ETB receptors increases glomerular cGMP via an L-arginine-dependent pathway. Am. J. Physiol. 263:F1020–F1025.

    PubMed  CAS  Google Scholar 

  • Fujitani, Y., Udea, H., Okada, T., Urade, Y., and Karaki, H. (1993). A selective agonist of endothelin type B receptor, IRL 1620, stimulates cyclic GMP increase via nitric oxide formation in rat aorta. J. Pharmacol. Exp. Ther. 267:683–689.

    PubMed  CAS  Google Scholar 

  • Fukuda, N., Izumi, Y., Soma, M., Watanabe, Y., Watanabe, M., Hatano, M., Sukuma, I., and Yasuda, H. (1990). L-NG-monomethylarginine inhibits the vasodilating effects of low dose of endothelin-3 on rat mesenteric arteries. Biochem. Biophys. Res. Commun. 167:739–745.

    Article  PubMed  CAS  Google Scholar 

  • Garbers, D. L. (1989). Guanylate cyclase, a cell surface receptor. J. Biol. Chem. 264:9102–9106.

    Google Scholar 

  • Garrido, M. R., and Israel, A. (1994). Endothelin-3 stimulates phosphoinositide hydrolysis in the subfornical organ and median eminence of the rat brain. Brain Res. Bull. 33:683–688.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, M. R., and Israel, A. (1997). Endothelin ETA receptor subtype mediates phosphoinositide hydrolysis in rat adrenal medulla. Arch. Physiol. Biochem. 105:467–472.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., Southam, E., Boulton, C. L., Nielsen, E. B., Schmidt, K., and Mayer, B. (1995). Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-(1,2,4)oxadiazol (4,3-a) quinoxalin-1-one. Mol. Pharmacol. 48:184–188.

    PubMed  CAS  Google Scholar 

  • Hagiwara, H., Nagasawa, T., Yamamoto, T., Mahmud L, K., Ito, T., Takemura, N., and Hirose, S. (1993). Immunochemical characterization and localization of endothelin ETB receptor. Am. J. Physiol. 264:R777–R783.

    PubMed  CAS  Google Scholar 

  • Haycock, J. W. (1993). Multiple signalling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochem. Res. 18:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Heym, C., Colombo-Beckmann, M., and Mayer, B. (1994). Immunohistochemical demonstration of the synthesis enzyme for nitric oxide and of comediators in neurons and chromaffin cells of the human adrenal medulla. Ann Anat. 176:11–16.

    PubMed  CAS  Google Scholar 

  • Hinson, J. P., Kapas, S., Teja, R., and Vinson, G. P. (1991). Effect of the endothelins on aldosterone secretion by rat zona glomerulosa cells in vitro. J. Steroid Biochem. Mol. Biol. 41:437–439.

    Article  Google Scholar 

  • Hirata, Y., Emori, T., Eguchi, S., Kanno, K., Imai, T., Ohta, K., and Marumo, F. (1993). Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J. Clin Invest. 91:1367–1373.

    PubMed  CAS  Google Scholar 

  • Hosokawa, A., Nagayama, T., Masada, K., Yoshida, M., Suzuki-Kusaba, M., Hisa, H., Kimura, T., and Satoh, S. (1999). Role of ET(B) receptors and nitric oxide in adrenal catecholamine secretion in anesthetized dogs. Am. J. Physiol. 277:R1051–R1056.

    PubMed  CAS  Google Scholar 

  • Imai, T., Hirata, Y., Eguchi, S., Kanno, K., Ohta, K., Emori, T., Sakamoto, A., Yanagisawa, M., Masaki, T., and Marumo, F. (1992). Concomitant expression of receptor subtype and isopeptide of endothelin by human adrenal gland. Biochem. Biophys. Res. Commun. 182:1115–1121.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, K., Warner, T. D., Sheng, H., and Murad, F. (1991). Endothelin increases cyclic GMP levels in LLC-PK1 porcine kidney epithelial cells via formation of an endothelium-derived relaxing factor-like substance. J. Pharmacol. Exp. Ther. 259:1102–1108.

    PubMed  CAS  Google Scholar 

  • Kanyicska, B., Burris, T. P., and Freeman, M. E. (1991). Endothelin-3 inhibits prolactin and stimulates LH, FSH and TSH secretion from pituitary cell culture. Biochem. Biphys. Res. Commun. 174:338–343.

    Article  CAS  Google Scholar 

  • Kasuya, Y., Abe, Y., Hama, H., Sakurai, T., Asada, S., Masaka, T., and Goto, K. (1994). Endothelin-1 activates mitogen-activated protein kinases through two independent signalling pathways in rat astrocytes. Biochem. Biophys. Res. Commun. 204:1325–1333.

    Article  PubMed  CAS  Google Scholar 

  • Knowlers, R. G., Palacios, M., Palmer, R. M. J., and Moncada, S. (1989). Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 86:5159–5162.

    Article  Google Scholar 

  • Kohzuki, M., Johnston, C. I., Yeen Chai, S., Casley, D. J., Rogerson, F., and Mendelsohn, F. A. O. (1989). Endothelin receptors in rat adrenal gland visualized by quantitative autoradiography. Clin. Exp. Pharmacol. Physiol. 16:239–242.

    PubMed  CAS  Google Scholar 

  • Korth, P., Bohle, R. M., Corvol, P., and Pinet, F. (1999). Cellular distribution of endothelin-converting enzyme-1 in human tissues. J. Histochem. Cytochem. 47:447–461.

    PubMed  CAS  Google Scholar 

  • Koseki, C., Imai, M., Hirata, Y., Yanagisawa, M., and Masaki, T. (1989). Autoradiographic distribution in rat tissue of binding sites for endothelin: A neuropeptide. Am. J. Physiol. 256:R858–R866.

    PubMed  CAS  Google Scholar 

  • Lin, W. W., Lee, C. Y., and Chuang, D. M. (1991). Endothelin and sarafotoxin-induced phosphoinositide hydrolysis in cultured cerebellar granule cells: Biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 257:1053–1061.

    PubMed  CAS  Google Scholar 

  • Livett, B. G., Marley, P. D., Wan, D. C., and Zhou, X. F. (1990). Peptide regulation of adrenal medullary function. J. Neural Trans. (Suppl.). 29:77–89.

    CAS  Google Scholar 

  • Lovenberg, W., and Miller, R. C. (1990). Endothelin: A review of its effects and possible mechanisms of action. Neurochem. Res. 15:407–417.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O., Rosebrough, N., Farr, A., and Randall, R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • Malhotra, R. K., and Wakade, A. R. (1987). Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone. J. Physiol. 383:639–652.

    PubMed  CAS  Google Scholar 

  • Marsault, T., Vigne, P., Breittmayer, J. P., and Frelin, C. (1990). Astrocytes are target cells for endothelins and sarafotoxins. J. Neurochem. 54:2142–2144.

    Article  PubMed  CAS  Google Scholar 

  • Mathison, Y., and Israel, A. (1998). Endothelin ETB receptor subtype mediates nitric/oxide cGMP formation in rat adrenal medulla. Brain Res. Bull. 45:15–19.

    Article  PubMed  CAS  Google Scholar 

  • Mathison, Y., and Israel, A. (2002). Role of endothelin type B receptor in nitric oxide/cGMP signaling pathway in rat median eminence. Cell. Mol. Neurobiol. 22:783–795.

    Article  PubMed  CAS  Google Scholar 

  • Mazaki, T. (1993). Endothelins: Homeostatic and compensatory actions in the circulatory and endocrine systems. Endocrine Rev. 14:256–268.

    Article  Google Scholar 

  • Mazzocchi, G., Malendowicz, L. K., Musajo, F. C., Gottardo, G., Markowska, A., and Nussdorfer, G. G. (1998). Role of endothelins in regulation of vascular tone in the in situ perfused rat adrenals. Am. J. Physiol. 274:E1–E5.

    PubMed  CAS  Google Scholar 

  • Moller, T., Kann, O., Prinz, M., Kirchhoff, F., Verkhratsky, A., and Kettenmann, H. (1997). Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. Neuroreport 8:2127–2131.

    PubMed  CAS  Google Scholar 

  • Moretto, M., Lopez, F. J., and Negro-Vilar, A. (1993). Nitric oxide regulates luteinizing hormone-releasing hormone secretion. Endocrinology 133:2399–2402.

    Article  PubMed  CAS  Google Scholar 

  • Moritoki, H., Miyano, H., Takeuchi, S., Yamaguchi, M., Hisayama, T., and Kondoch, W. (1993). Endothelin-3-induced relaxation of rat thoracic aorta: A role for nitric oxide formation. Br. J. Pharmacol. 108:1125–1130.

    PubMed  CAS  Google Scholar 

  • Nunez, D. J. R., Brown, M. J., Davenport, A. P., Neylon, C. B., Schofield, J. P., and Wyse, R. K. (1990). Endothelin-1 mRNA is widely expressed in porcine and human tissue. J. Clin. Invest. 85:1537–1541.

    PubMed  CAS  Google Scholar 

  • Ohara-Imaizumi, M., and Kamakura, K. (1991). Dynamics of the secretory response evoked by endothelin-1 in adrenal chromaffin cells. J. Cardiovasc. Pharmacol. 17:S156–S158.

    PubMed  CAS  Google Scholar 

  • Oset-Gasque, M. J., Parramún, M., Hortelano, S., and Gonzalez, M. P. (1994). Nitric oxide implications in the control of neurosecretion by chromaffin cells. J. Neurochem. 63:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  • Oset-Gasque, M. J., Vicente, S., González, M. P., Rosario, L. M., and Castro, E. (1998). Segregation of nitric oxide synthase expression and calcium response to nitric oxide in adrenergic and noradrenergic bovine chromaffin cells. Neuroscience 83:271–280.

    Article  PubMed  CAS  Google Scholar 

  • Owada, A., Tomita, K., Terada, Y., Sakamoto, H., Nonoguchi, H., and Marumo, F. (1994). Endothelin (ET)-3 stimulates cyclic guanosine 3′,5′-monophosphate production via ETB receptor by producing nitric oxide in isolated rat glomerulus, and in cultured rat mesangial cells. J. Clin. Invest. 93:556–563.

    Article  PubMed  CAS  Google Scholar 

  • Rokoski, R. Jr., and Rokoski, L. M. (1987). Activation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger system. J. Neurochem. 48:236–242.

    Google Scholar 

  • Sakurai, T., Yanagisawa, M., Takura, Y., Miyazaki, H., Kimura, S., Goto, K., and Masaki, T. (1990). Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348:732–735.

    Article  PubMed  CAS  Google Scholar 

  • Schinelli, S., Zanassi, P., Paolillo, M., Wang, H., Feliciello, A., and Gallo, V. (2001). Stimulation of endothelin B receptors in astrocytes induces cAMP response element-binding protein phosphorylation and c-fos expression via multiple mitogen-activated protein kinase signaling pathways. J. Neurosci. 21:8842–8853.

    PubMed  CAS  Google Scholar 

  • Schinelli, S. (2002). The brain endothelin system as potential target for brain-related pathologies. Current Drug Target—CNS Neurobiol. Disord. 1:543–553.

    Article  CAS  Google Scholar 

  • Servitja, J. M., Masgrau, R., Sarri, E., and Picatoste, F. (1998) Involvement of ET(A) and ET(B) receptors in the activation of phospholipase D by endothelins in cultured rat cortical astrocytes. Br. J. Pharmacol. 124:1728–1734.

    Article  PubMed  CAS  Google Scholar 

  • Shichiri, M., Hirata, Y., Kanno, K., Ohta, K., Emori, T., and Murumo, F. (1989). Effect of endothelin-1 on release of arginine-vasopressin from perfused rat hypothalamus. Biochem. Biophys. Res. Commun. 163:1332–1337.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, A., Parker, C., and Kipnis, D. M. (1972). Radio-immunoassay for cyclic nucleotides. J. Biol. Chem. 247:1106–1113.

    PubMed  CAS  Google Scholar 

  • Stojilkovic, S. S., Merelli, F., Iida, T., Krsmanovic, L. Z., and Catt, K. J. (1990). Endothelin stimulation of cytosolic calcium and gonadotropin secretion in anterior pituitary cells. Science 248:1663–1666.

    Article  PubMed  CAS  Google Scholar 

  • Stojilkovic, S. S., and Catt, K. J. (1992). Neuroendocrine actions of endothelins. Trends Pharmacol. Sci. 13:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Szabó, C. (1996). Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res. Bull. 41:131–141.

    PubMed  Google Scholar 

  • Takai, M., Umemura, I., Yamasaki, K., Waranabe, T., Fujitani, Y., Oda, K., Urade, Y., Unui, T., Yamamura, T., and Okada, T. (1992). A potent and specific agonist, Suc-(Glu9, Ala11,15)-endothelin-1(18–21), IRL-1620, for ETB receptor. Biochem. Biophys. Res. Commun. 184:953–959.

    Article  PubMed  CAS  Google Scholar 

  • Warner, T. D., Mitchell, J. A., Nucci, G., and Vane, R. (1989). Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J. Cardiovasc. Pharamcol. 13(Suppl. 5):S85–S88.

    Article  CAS  Google Scholar 

  • Wilkes, L. C., and Boarder, M. R. (1991). Characterization of the endothelin binding site on bovine adrenomedullary chromaffin cells: Comparison with vascular smooth muscle cells. Evidence for receptor heterogeneity. J. Pharmacol. Exp. Ther. 256:628–633.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A., Little, P. J., and Tanner, J. K. (1990). Inositol phosphate release and steroidogenesis in rat adrenal glomerulosa cells. Comparison of the effects of endothelin, angiotensin II and vasopressin. Biochem. J. 241:791–796.

    Google Scholar 

  • Yamaguchi, N. (1993). Inhibition by nifedipine of endothelin-induced adrenal catecholamine secretion in anesthetized dogs. Can. J. Physiol. Pharmacol. 71:301–305.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, N. (1997) Role of ET(A) and ET(B) receptors in endothelin-1-induced adrenal catecholamine secretion in vivo. Am. J. Physiol. 272:R1290–R1297.

    PubMed  CAS  Google Scholar 

  • Yanagihara, N., Okazaki, M., Terao, T., Uezono, Y., Wada, A., and Izumi, F. (1991). Stimulatory effects of brain natriuretic peptide on cyclic GMP accumulation and tyrosine hydroxylase activity in cultured bovine adrenal medullary cells. Naunyn-Schmiedeberger’s Arch. Pharmacol. 343:289–295.

    CAS  Google Scholar 

  • Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, H., Yanagisawa, M., Kapur, R. P., Richardson, J. A., Williams, S. C., Clouthier, D. E., de Wit, D., Emoto, N., and Hammer, R. E. (1998). Dual genetic pathways of endothelium-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from FONACIT and CDCH, Universidad Central de Venezuela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Anita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anita, I., Yaira, M. & María del Rosario, G. Endothelin Signaling Pathways in Rat Adrenal Medulla. Cell Mol Neurobiol 26, 701–716 (2006). https://doi.org/10.1007/s10571-006-9111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9111-3

KEY WORDS:

Navigation