Skip to main content
Log in

Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Intact bovine adrenal medullary chromaffin cells were preincubated with32PO4, and the multiplesite phosphorylation of tyrosine hydroxylase (TH) was studied. Up to eight32P-labeled peptides were produced by tryptic hydrolysis of TH; however, all of the tryptic phosphopeptides were derived from four phosphorylation sites—Ser8, Ser19, Ser31 and Ser40. In situ regulation of32P incorporation into the latter three sites was demonstrated with a diverse set of pharmacological agents.32P incorporation into Ser19 was preferentially increased by brief exposures to depolarizing secretagogues. Longer treatments also increased Ser31 and Ser40 phosphorylation. Nicotine, muscarine and vasoactive intestinal polypeptide—reflecting cholinergic and non-cholinergic components of sympatho-adrenal transmission—each produced different patterns of multiple-site phosphorylation of TH. Nicotine, bradykinin and histamine increased32P incorporation at each of the three sites whereas muscarine, angiotensin II, endothelin III, prostaglandin E1, GABA and ATP selectively increased Ser31 phosphorylation. Nerve growth factor did not influence TH phosphorylation in chromaffin cells from adult adrenal glands but selectively increased Ser31 phosphorylation in chromaffin cells isolated from calf adrenal glands.32P incorporation into Ser40 was selectively increased by forskolin and other cAMP-acting agents whereas vasoactive intestinal polypeptide increased Ser31 and Ser40 phosphorylation. Thus, the phosphorylation of TH in bovine chromaffin cells appears to be regulated at three sites by three separate intracellular signaling pathways—Ser19 via Ca2+/calmodulin-dependent protein kinase II; Ser31 via ERK (MAP2 kinases); and Ser40 via cAMP-dependent protein kinase. These signaling pathways, as well as the extracellular signals that were effective in stimulating them, are similar to those previously described for TH in rat pheochromocytoma cells. However, several of the pharmacological agents produced different patterns of multiple-site TH phosphorylation in the bovine chromaffin cells. These differences between tissues could be accounted for by differences in the coupling/access between the extracellular signal transduction systems and the intracellular signaling pathways as opposed to differences in the intracellular signaling pathwaysper se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson, A., and Thoenen, H. 1987., Both short- and long-term effects of nerve growth factor on tyrosine hydroxylase in calf adrenal chromaffin cells are blocked by S-adenosylhomocysteine hydrolase inhibitors. J. Neurochem. 48:1416–1424.

    Google Scholar 

  2. Ahn, N. G., Robbins, D. J., Haycock, J. W., Seger, R., Cobb, M. H., and Krebs, E. G. 1992. Identification of an activator of the MAP kinases ERK1 and ERK2 in PC12 cells stimulated with nerve growth factor or bradykinin. J. Neurochem., 59:147–156.

    Google Scholar 

  3. Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H., and Yancopoulos, G. D. 1991. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675.

    Google Scholar 

  4. Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slaughter, C., Moomaw, C., Hsu, J., and Cobb, M. H. 1990. An insulinstimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249:64–67.

    Google Scholar 

  5. Cahill, A. L., Horwitz, J., and Perlman, R. L. 1989. Phosphorylation of tyrosine hydroxylase in protein kinase C-deficient PC12 cells. Neurosci. 30:811–818.

    Google Scholar 

  6. Campbell, D. G., Hardie, D. G., and Vulliet, P. R. 1986. Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J. Biol. Chem. 261:10489–10492.

    Google Scholar 

  7. Carmichael, S. W., and Stoddard, S. L. 1989. The Adrenal Medulla 1986–1988. Telford Press, Caldwell, N.J.

    Google Scholar 

  8. Challis, R. A. J., Jones, J. A., Owen, P. J., and Boarder, m. R. 1991. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56:1083–1086.

    Google Scholar 

  9. Chandler, C. E., Cragoe, E. J., and Glaser, L. 1985. Nerve growth factor does not activete Na+/H+ exchange in PC12 pheochromocytoma cells. J. Cell. Physiol. 125:367–378.

    Google Scholar 

  10. Cobb, M. H., Robbins, D. J., and Boulton, T. G. 1991. ERKs, extracellular signal-regulated MAP2 kinases. Curr. Opinion Cell Biol. 3:1025–1032.

    Google Scholar 

  11. D'Mello, S. R., Weisberg, E. P., Stachowiak, M. K., Turzai, L. M., Gioio A. E., and Kaplan, B. B. 1988. Isolation and nucleotide sequence of a cDNA clone encoding bovine adrenal tyrosine hydroxylase: Comparative analysis of tyrosine hydroxylase gene products. J. Neurosci. Res. 19:440–449.

    Google Scholar 

  12. Eipper, B. A., and Mains, R. E. 1982. Phosphorylation of proadrenocorticotropin/endorphin-derived peptides. J. Biol. Chem. 257:4907–4915.

    Google Scholar 

  13. Ely, C. M., Oddie, K. M., Litz, J. S., Rossomando, A. J., Kanner, S. B., Sturgill, T. W., and Parsons, S. J. 1990. A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kD mitogen-stimulated protein in fibroblasts. J. Cell Biol. 110:731–742.

    Google Scholar 

  14. Funakoshi, H., Okuno, S., and Fujisawa, H. 1991. Different effects on activity caused by phosphorylation of tyrosine hydroxylase at serine 40 by three multifunctional protein kinases. J. Biol. Chem. 266:15614–15620.

    Google Scholar 

  15. George, R. J., Haycock, J. W., Johnston, J. P., Craviso, G. L., and Waymire, J. C. 1989. In vitro phosphorylation of bovine adrenal chromaffin cell tyrosine hydroxylase by endogenous protein kinases. J. Neurochem. 52:274–284.

    Google Scholar 

  16. Haavik, J., Schelling, D. L., Campbell, D. G., Andersson, K. K., Flatmark, T., and Cohen, P. 1989. Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: Evidence from the effects of okadaic acid. FEBS Lett. 251:36–42.

    Google Scholar 

  17. Haycock, J. W. 1987. Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum. Brain Res. Bull. 19:619–622.

    Google Scholar 

  18. Haycock, J. W. 1989. Quantitation of tyrosine hydroxylase protein levels: Spot immunolabeling with an affinity-purified antibody. Anal. Biochem. 181:259–266.

    Google Scholar 

  19. Haycock, J. W. 1990. Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31 and 40. J. Biol. Chem. 265:11682–11691.

    Google Scholar 

  20. Haycock, J. W., Ahn, N. G., Cobb, M. H., and Krebs, E. G. 1992. ERK1 and ERK2, two microtubule-associated protein kinases, mediate the phosphorylation of tyrosine hydroxylase at serine 31 in situ. Proc. Natl. Acad. Sci. USA, 89:2365–2369.

    Google Scholar 

  21. Haycock, J. W., Bennett, W. F., George, R., and Waymire, J. C. 1982. Multiple-site phosphorylation of tyrosine hydroxylase: Differential regulation by 8-bromo-cAMP and acetylcholine. J. Biol. Chem. 257:13699–13703.

    Google Scholar 

  22. Haycock, J. W., Browning, M. D., and Greengard, P. 1988. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 84:1677–1681.

    Google Scholar 

  23. Haycock, J. W., George, R. J., and Waymire, J. C. 1985. In situ phosphorylation of tyrosine hydroxylase in chromaffin cells: Localization to soluble compartments. Neurochem. Int. 7:301–308.

    Google Scholar 

  24. Haycock, J. W. and Haycock, D. A. 1991. Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J. Biol. Chem. 266:5650–5657.

    Google Scholar 

  25. Haycock, J. W. and Wakade, A. R. 1992. Activation and multiplesite phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. J. Neurochem. 58:57–64.

    Google Scholar 

  26. Houchi, H., Oka, M., Misbahuddin, M., Morita, K., and Nakanishi, A. 1987. Stimulation by vasoactive intestinal polypeptide of catecholamine synthesis in isolated bovine adrenal chromaffin cells: Possible involvement of protein kinase C. Biochem. Pharmacol. 36:1551–1554.

    Google Scholar 

  27. Houghten, R. A. and Li, C. H. 1979. Reduction of sulfoxides in peptides and proteins. Anal. Biochem. 98:36–46.

    Google Scholar 

  28. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227:680–685.

    Google Scholar 

  29. Le Bourdelles, B., Horellou, P., Le Caer, J.-P., Denefle, P., Latta, M., Haavik, J., Guibert, B., Mayaux, J.-F., and Mallet, J. 1991. Phosphorylation of human recombinant tyrosine hydroxylase isoforms 1 and 2: An additional phosphorylated residue in isoform 2, generated through alternative splicing. J. Biol. Chem. 266:17124–17130.

    Google Scholar 

  30. Livett, B. G. 1984. Adrenal medullary chromaffin cells in vitro. Physiol. Rev. 64:1103–1161.

    Google Scholar 

  31. Livett, B. G., Mitchelhill, K. I., and Dean, D. M. 1987. Adrenal chromaffin cells—their isolation and culture. Pages 171–175,in Poisner, A. M. and Trifaro, J. M. (eds.), In Vitro Methods for Studying Secretion, Elsevier Science Publishers B. V., Amsterdam.

    Google Scholar 

  32. Malhotra, R. K., Wakade, A. R. 1987. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone. J. Physiol. (Lond.) 383:639–652.

    Google Scholar 

  33. Malhotra, R. K., Wakade, T. D., and Wakade, A. R. 1988. Vasoactive intestinal polypeptide and muscarine mobilize intracellular Ca2++ through breakdown of phosphoinositides to induce catecholamine secretion. J. Biol. Chem. 263:2123–2126.

    Google Scholar 

  34. Markwell, M. A. K., Haas, S. M., Bieber, L. L., and Tolbert, N. E. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87:206–210.

    Google Scholar 

  35. Naujoks, K. W., Korsching, S., Rohrer, H., and Thoenen, H. 1982. Nerve growth factor-mediated induction of tyrosine hydroxylase and of neurite outgrowth in cultures of bovine adrenal chromaffin cells: Dependence on developmental stage. Dev. Biol. 92:365–379.

    Google Scholar 

  36. Negishi, M., and Ito, S. 1990. Involvement of phosphoinositide metabolism in GABA-induced catecholamine release from cultured bovine adrenal chromaffin cells. Biochem. Pharmacol. 40:2719–2725.

    Google Scholar 

  37. Negishi, M., Ito, S., and Hayaishi, O. 1989. Prostaglandin E receptors in bovine adrenal medulla are coupled to adenylate cyclase via Gi and to phosphoinositide metabolism in a pertussis toxin-insensitive manner. J. Biol. Chem. 264:3916–3923.

    Google Scholar 

  38. Plevin, R., and Boarder, M. R. 1988. Stimulation of formation of inositol phosphates in primary cultures of bovine adrenal chromaffin cells by angiotensin II, histamine, bradykinin and carbachol. J. Neurochem. 51:634–641.

    Google Scholar 

  39. Pocotte, S. L., and Holz, R. W. 1986. Effects of phorbol ester on tyrosine hydroxylase phosphorylation and activation in cultured bovine adrenal chromaffin cells. J. Biol. Chem. 261:1873–1877.

    Google Scholar 

  40. Saadat, S., Stehle, A. D., Lamouroux, A., Mallet, J., and Thoenen, H. 1988. Predicted amino acid sequence of bovine tyrosine hydroxylase and its similarity to tyrosine hydroxylases from other species. J. Neurochem. 51:572–578.

    Google Scholar 

  41. Sasakawa, N., Nakaki, T., and Kato, R. 1990. Stimulus-responsive and rapid formation of inositol pentakisphosphate in cultured adrenal chromaffin cells. J. Biol. Chem. 265:17700–17705.

    Google Scholar 

  42. Sasakawa, N., Nakaki, T., Yamamoto, S., and Kato, R. 1989. Stimulation by ATP of inositol triphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells. J. Neurochem. 52:441–447.

    Google Scholar 

  43. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem. 150:76–85.

    Google Scholar 

  44. Stauderman, K. A. and Pruss, R. M. 1990. Different patterns of agonist-stimulated increases of3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: Comparison of the effects of histamine and angiotensin II.. J. Neurochem. 54:946–953.

    Google Scholar 

  45. Swilem, A.-M. F., Hawthorne, J. N., and Azila, N. 1983. Catecholamine secretion by perfused bovine adrenal medulla in response to nicotinic activation is inhibited by muscarinic receptors. Biochem. Pharmacol. 32:3873–3874.

    Google Scholar 

  46. Tarr, G. E. 1987. Manual methods for protein/peptide sequence analysis. Pages 35–47, in Bhown, A. S. (ed.), “Protein/Peptide Sequence Analysis: Current Methodologies,” CRC Press, Inc., Boca Raton.

    Google Scholar 

  47. Vulliet, P. R., Woodgett, J. R., and Cohen, P. 1984. Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. J. Biol. Chem. 259:13680–13683.

    Google Scholar 

  48. Wakade, T. D., Blank, M. A., Malhotra, R. K., Pourcho, R., and Wakade, A. R. 1991. The peptide VIP is a neurotransmitter in rat adrenal medulla: Physiological role in controlling catecholamine secretion. J. Physiol. (Lond.) 44:349–361.

    Google Scholar 

  49. Waymire, J. C., Bennett, W. F., Boehme, R., Hankins, L., Gilmer-Waymire, K., and Haycock, J. W. 1983. Bovine adrenal chromaffin cells: High yield purification and viability in suspension culture. J. Neurosci. Meth. 7:329–351.

    Google Scholar 

  50. Waymire, J. C., Craviso, G. L., Lichteig, K., Johnston, J. P., Baldwin, C., and Zigmond, R. E. 1991. Vasoactive intestinal peptide stimulates catecholamine biosynthesis in isolated adrenal chromaffin cells: Evidence for a cyclic AMP-dependent phosphorylation and activation of tyrosine hydroxylase. J. Neurochem. 57:1313–1324.

    Google Scholar 

  51. Waymire, J. C., Johnston, J. P., Hummer-Lickteig, K., Lloyd, A., Vigny, A., and Craviso, G. L. 1988. Phosphorylation of bovine adrenal chromaffin cell tyrosine hydroxylase. Temporal correlation of acetylcholine's effect on site phosphorylation, enzyme activation, and catecholamine synthesis. J. Biol. Chem. 263:12439–12447.

    Google Scholar 

  52. Wilson, S. P. 1988. Vasoactive intestinal peptide elevates cyclic AMP levels and potentiates secretion in bovine adrenal chromaffin cells. Neuropeptides 11:17–21.

    Google Scholar 

  53. Zigmond, R. E., Schwarzschild, M. A., and Rittenhouse, A. R. 1989. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu. Rev. Neurosci. 12:415–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Paul Greengard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haycock, J.W. Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40 . Neurochem Res 18, 15–26 (1993). https://doi.org/10.1007/BF00966919

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966919

Key Words

Navigation