Skip to main content

Advertisement

Log in

Pharmacogenomics: Catechol O-Methyltransferase to Thiopurine S-Methyltransferase

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Pharmacogenomics is the study of the role of inheritance in variation in the drug response phenotype—a phenotype that can vary from adverse drug reactions at one end of the spectrum to lack of therapeutic efficacy at the other.

2. The thiopurine S-methyltransferase (TPMT) genetic polymorphism represents one of the best characterized and most clinically relevant examples of pharmacogenomics. This polymorphism has also served as a valuable “model system” for studies of the ways in which variation in DNA sequence might influence function.

3. The discovery and characterization of the TPMT polymorphism grew directly out of pharmacogenomic studies of catechol O-methyltransferase (COMT), an enzyme discovered by Julius (Julie) Axelrod and his coworkers.

4. This review will outline the process by which common, functionally significant genetic polymorphisms for both COMT and TPMT were discovered and will use these two methyltransferase enzymes to illustrate general principles of pharmacogenomic research—both basic mechanistic and clinical translational research—principles that have been applied to a series of genes encoding methyltransferase enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  • Aksoy, S., Szumlanski, C. L., and Weinshilboum, R. M. (1994). Human liver nicotinamide N-methyltransferase: cDNA cloning, expression and biochemical characterization. J. Biol. Chem. 265:14835–14840.

    Google Scholar 

  • Aksoy, S., Raftogianis, R., and Weinshilboum, R. (1996). Human histamine N-methyltransferase gene: Structural characterization and chromosomal localization. Biochem. Biophys. Res. Commun. 219:548–554.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, S., Brandriff, B. F., Ward, V., Little, P. F. R., and Weinshilboum, R. M. (1995). Human nicotinamide N-methyltransferase gene: Molecular cloning, structural characterization, and chromosomal localization. Genomics 29:555–561.

    Article  PubMed  CAS  Google Scholar 

  • Assicot, M., and Bohuon, C. (1971). Presence of two distinct catechol O-methyltransferase activities in red blood cells. Biochimie 53:871–874.

    PubMed  CAS  Google Scholar 

  • Axelrod, J. (1962a). Purification and properties of phenylethanolamine N-methyltransferase. J. Biol. Chem. 237:1657–1660.

    PubMed  CAS  Google Scholar 

  • Axelrod, J. (1962b). The enzymatic N-methylation of serotonin and other amines. J. Pharmacol. Exp. Ther. 138:28–33.

    PubMed  CAS  Google Scholar 

  • Axelrod, J., and Tomchick, R. (1958). Enzymatic O-methylation of epinephrine and other catechols. J. Biol. Chem. 233:702–705.

    PubMed  CAS  Google Scholar 

  • Axelrod, J., and Daly, J. (1968). Phenol-O-methyltransferase. Biochim. Biophys. Acta 159:472–478.

    PubMed  CAS  Google Scholar 

  • Axelrod, J., and Cohen, C. K. (1971). Methyltransferase enzymes in red blood cells. J. Pharmacol. Exp. Ther. 176:650–654.

    PubMed  CAS  Google Scholar 

  • Boudíková, B., Szumlanski, C., Maidak, B., and Weinshilboum, R. (1990). Human liver catechol O-methyltransferase pharmacogenetics. Clin. Pharmacol. Ther. 48:381–389.

    Article  PubMed  Google Scholar 

  • Brown, D. D., Tomchick, R., and Axelrod, J. (1959). The distribution and properties of a histamine methylating enzyme. J. Biol. Chem. 234:2948–2950.

    PubMed  CAS  Google Scholar 

  • Campbell, N. R. C., Dunnette, J. H., Mwaluko, G., Van Loon, J., and Weinshilboum, R. M. (1984). Platelet phenol sulfotransferase and erythrocyte catechol O-methyltransferase activities: Correlation with methyldopa metabolism in man. Clin. Pharmacol. Ther. 35:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Cantoni, G. L. (1953). S-Adenosylmethionine: A new intermediate formed enzymatically from l-methionine and adenosinetriphosphate. J. Biol. Chem. 204:402–416.

    Google Scholar 

  • Cavalieri, E. L., Stack, D. E., Devanesan, P. D., Todorovic, R., Dwivedy, I., Higginbothan, S., Johannson, S. L., Patil, K. D., Gross, M. L., Gooden, J. K., Ramanathan, R., Cerny, R. L., and Rogan, E. G. (1997). Molecular origin of cancer: Catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc. Natl. Acad. Sci. U.S.A. 94:10937–10942.

    Article  PubMed  CAS  Google Scholar 

  • Colditz, G. A. (1997). A biomathematical model of breast cancer incidence: The contribution of reproductive factors to variation in breast cancer incidence. In General Motors Cancer Research Foundation. Accomplishments in Cancer Research 1996. Fortner, J. G., and Shaarp, P. A. (eds.). Philadelphia: Lippincott-Raven, pp. 116–121.

  • Collie-Duguid, E. S. R., Pritchard, S. C., Powrie, R. H., Sludden, J., Colier, D. A., Li, T., and Mcleod, H. L. (1998). The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9:37–42.

    Google Scholar 

  • Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R., Goldman, D., and Weinberger, D. R. (2001). Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 98:6917–6922.

    Article  PubMed  CAS  Google Scholar 

  • Evans, W. E., Horner, M., Chu, Y. Q., Kalwinsky, D., and Roberts, W. M. (1991). Altered mercaptopurine metabolism, toxic effects and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphoblastic leukemia. J. Pediatr. 119:985–989.

    Article  PubMed  CAS  Google Scholar 

  • Floderus, Y., Ross, S. B., and Wetterberg, L. (1981). Erythrocyte catechol O-methyltransferase (COMT) activity in a Swedish population. Clin. Genet. 19:389–392.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata, R., Gao, Y. S., and Sztul, E. (2002). Hassles with taking out the garbage: Aggravating aggresomes. Traffic 3:388–396.

    Article  PubMed  CAS  Google Scholar 

  • Girard, B., Otterness, D. M., Wood, T. C., Honchel, R., Wieben, E. D., and Weinshilboum, R. M. (1994). Human histamine N-methyltransferase pharmacogenetics: Cloning and expression of kidney cDNA. Mol. Pharmacol. 45:461–468.

    PubMed  CAS  Google Scholar 

  • Guerciolini, R., Szumlanski, C., and Weinshilboum, R. M. (1991). Human liver xanthine oxidase: Nature and extent of individual variation. Clin. Pharmacol. Ther. 50:663–672.

    Article  PubMed  CAS  Google Scholar 

  • Guldberg, H. C., and Marsden, C. A. (1975). Catechol O-methyltransferase: Pharmacological aspects and physiological role. Pharmacol. Rev. 27:135–206.

    PubMed  CAS  Google Scholar 

  • Hohfeld, J., Cyr, D. M., and Patterson, C. (2001). From the cradle to the grave: Molecular chaperones that may choose between folding and degradation. EMBO Rep. 2:885–890.

    Article  PubMed  CAS  Google Scholar 

  • Honchel, R., Aksoy, I., Szumlanski, C., Wood, T. C., Otterness, D. M., Wieben, E. D., and Weinshilboum, R. M. (1993). Human thiopurine methyltransferase: Molecular cloning and expression of T84 colon carcinoma cell cDNA. Mol. Pharmacol. 43:878–887.

    PubMed  CAS  Google Scholar 

  • Huang, C.-S., Chern, H.-D., Chang, K.-J., Cheng, C.-W., Hsu, S.-M., and Shen, C.-Y. (1999). Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: A multigenic study on cancer susceptibility. Cancer Res. 59:4870–4875.

    PubMed  CAS  Google Scholar 

  • Ji, Y., Salavaggione, O. E., Wang, L., Adjei, A. A., Eckloff, B., Wieben, E. D., and Weinshilboum, R. M. (2005). Human phenylethanolamine N-methyltransferase pharmacogenomics: Gene resequencing and functional genomics. J. Neurochem. 95:1766–1776.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998). Aggresomes: A cellular response to misfolded proteins. J. Cell Biol. 143:1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. A., Illing, M. E., and Kopito, R. R. (2002). Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 53:26–38.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, Y., Kovacs, J. J., McLaurin, A., Vance, J. M., Ito, A., and Yao, T. P. (2003). The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738.

    Article  PubMed  CAS  Google Scholar 

  • Keith, R. A., Abraham, R. T., Pazmiño, P., and Weinshilboum, R. M. (1983a). Correlation of low and high affinity thiol methyltransferase and phenol methyltransferase activities in human erythrocyte membranes. Clin. Chim. Acta 131:257–272.

    Article  PubMed  CAS  Google Scholar 

  • Keith, R. A., Van Loon, J., Wussow, L. F., and Weinshilboum, R. M. (1983b). Thiol methylation pharmacogenetics: Heritability of human erythrocyte thiol methyltransferase activity. Clin. Pharmacol. Ther. 34:521–528.

    Article  PubMed  CAS  Google Scholar 

  • Kopita, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524–530.

    Article  Google Scholar 

  • Krynetski, E. Y., Schuetz, J. D., Galpin, A. J., Pui, C.-H., Relling, M. V., and Evans, W. E. (1995). A single point mutation leading to loss of catalytic activity in human thiopurine methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 92:949–953.

    Article  PubMed  CAS  Google Scholar 

  • Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y.-M., Szumlanski, C. L., and Weinshilboum, R. M. (1996). Human catechol O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne, J. A., Helzlsouer, K. J., Huang, H.-Y., Strickland, P. T., Bell, D. A., Selmin, O., Watson, M. A., Hoffman, S., Comstock, G. W., and Yager, J. D. (1997). An association between the allele coding for a low activity variant of catechol O-methyltransferase and the risk for breast cancer. Cancer Res. 57:5493–5497.

    PubMed  CAS  Google Scholar 

  • Lennard, L. (1992). The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol. 43:329–339.

    Article  PubMed  CAS  Google Scholar 

  • Lennard, L., Van Loon, J. A., and Weinshilboum, R. M. (1989). Pharmacogenetics of acute azathioprine toxicity: Relationship to thiopurine methyltransferase genetic polymorphism. Clin. Pharmacol. Ther. 46:149–154.

    Article  PubMed  CAS  Google Scholar 

  • Lennard, L., Van Loon, J. A., Lilleyman, J. S., and Weinshilboum, R. M. (1987). Thiopurine pharmacogenetics in leukemia: Correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin. Pharmacol. Ther. 41:18–25.

    Article  PubMed  CAS  Google Scholar 

  • Lennard, L., Lilleyman, J. S., Van Loon, J., and Weinshilboum, R. M. (1990). Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225–229.

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist, M., Haglund, S., Almer, S., Peterson, C., Taipalensu, J., Hertervig, E., Lyrenas, E., and Soderkvist, P. (2004). Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics 14:261–265.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, H. L., Krynetski, E. Y., Relling, M. V., and Evans, W. E. (2000). Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567–572.

    Article  PubMed  CAS  Google Scholar 

  • Neckers, L. (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8:S55–S61.

    Article  PubMed  CAS  Google Scholar 

  • Otterness, D. M., Szumlanski, C. L., Wood, T. C., and Weinshilboum, R. M. (1998). Human thiopurine methyltransferase pharmacogenetics: Kindred with a terminal exon splice junction mutation that results in loss of activity. J. Clin. Invest. 101:1036–1044.

    PubMed  CAS  Google Scholar 

  • Preuss, C. V., Wood, T. C., Szumlanski, C. L., Raftogianis, R. B., Otterness, D. M., Girard, B., Scott, M. C., and Weinshilboum, R. M. (1998). Human histamine N-methyltransferase pharmacogenetics: Common genetic polymorphisms that alter activity. Mol. Pharmacol. 53:708–717.

    PubMed  CAS  Google Scholar 

  • Raymond, F. A., and Weinshilboum, R. M. (1975). Microassay of human erythrocyte catechol O-methyltransferase: Removal of inhibitory calcium ion with chelating resin. Clin. Chim. Acta 58:185–194.

    PubMed  CAS  Google Scholar 

  • Reilly, D. K., Rivera Calimlim, L., and Van Dyke, D. (1980). Catechol O-methyltransferase activity: A determinant of levodopa response. Clin. Pharmacol. Ther. 28:278–286.

    Article  PubMed  CAS  Google Scholar 

  • Remy, C. N. (1963). Metabolism of thiopyrimidines and thiopurines: S-methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissue. J. Biol. Chem. 238:1078–1084.

    PubMed  CAS  Google Scholar 

  • Roth, J. A. (1992). Membrane-bound catechol O-methyltransferase: A reevaluation of its role in the O-methylation of the catecholamine neurotransmitter. Rev. Physiol. Biochem. Pharmacol. 120:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Salavaggione, O. E., Wang, L., Wiepert, M., Yee, V. C., and Weinshilboum, R. M. (2005). Thiopurine S-methyltransferase pharmacogenetics: Variant allele functional and comparative genomics. Pharmacogenet. Genomics. 15:801–815.

    PubMed  CAS  Google Scholar 

  • Scanlon, P. D., Raymond, F. A., and Weinshilboum, R. M. (1979). Catechol O-methyltransferase: Thermolabile enzyme in erythrocytes of subjects homozygous for the allele for low activity. Science 203:63–65.

    Article  PubMed  CAS  Google Scholar 

  • Schütz, E., Gummert, J., Mohr, F., and Oellerich, M. (1993). Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341:436.

    Article  PubMed  Google Scholar 

  • Shield, A. J., Thomae, B. A., Eckloff, B. W., Wieben, E. D., and Weinshilboum, R. M. (2004). Human catechol O-methyltransferase genetic variation: Gene resequencing and functional characterization of variant allozymes. Mol. Psychiatr. 9:151–160.

    Article  CAS  Google Scholar 

  • Sladek-Chelgren, S., and Weinshilboum, R. M. (1981). Catechol O-methyltransferase biochemical genetics: Human lymphocyte enzyme. Biochem. Genet. 19:1037–1053.

    Article  PubMed  CAS  Google Scholar 

  • Spielman, R. S., and Weinshilboum, R. M. (1981). Genetics of red cell COMT activity: Analysis of thermal stability and family data. Am. J. Med. Genet. 10:279–290.

    Article  PubMed  CAS  Google Scholar 

  • Spire-Vayron de la Moureyre, C., Debuysere, H., Fizio, F., Sergent, E., Bernard, C., Sabbagh, N., Marez, D., Lo Guidice, J.-M., D’Lalluin, J.-C., and Broly, F. (1999). Characterization of a variable number tandem repeat region in the thiopurine S-methyltransferase gene promoter. Pharmacogenetics 9:189–198.

    PubMed  CAS  Google Scholar 

  • Szumlanski, C., Otterness, D., Her, C., Lee, D., Brandriff, B., Kelsell, D., Spurr, N., Lennard, L., Wieben, E., and Weinshilboum, R. (1996). Thiopurine methyltransferase pharmacogenetics: Human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 15:17–30.

    Article  PubMed  CAS  Google Scholar 

  • Szumlanski, C. L., Honchel, R., Scott, M. C., and Weinshilboum, R. M. (1992). Human liver thiopurine methyltransferase pharmacogenetics: Biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics 2:148–159.

    Article  PubMed  CAS  Google Scholar 

  • Tai, H.-L., Fessing, M. Y., Bonten, E. J., Yanishevsky, Y., d’Azzo, A., Krynetski, E. Y., and Evans, W. E. (1999). Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: Mechanism for TPMT protein deficiency inherited by TPMT * 2, TPMT * 3A, TPMT * 3B or TPMT * 3C. Pharmacogenetics 9:641–650.

    PubMed  CAS  Google Scholar 

  • Tenhunen, J., Salminen, M., Lundstrom, K., Kiviluoto, T., Savolainen, R., and Ulmanen, I. (1994). Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur. J. Biochem. 223:1049–1059.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M. A., Moon, E., Kim, U.-J., Siciliano, M. J., and Weinshilboum, R. M. (1999). Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning and chromosomal localization. Genomics 61:285–297.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, P. A., Shields, P. G., Freudenheim, J. L., Stone, A., Vena, J. E., Marshall, J. R., Graham, S., Laughlin, R., Nemoto, T., Kadlubar, F. F., and Ambrosone, C. B. (1998). Genetic polymorphisms in catechol O-methyltransferase, menopausal status, and breast cancer risk. Cancer Res. 58:2107–2110.

    PubMed  CAS  Google Scholar 

  • US Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, and Center for Devices and Radiological Health (November 2003). “Draft” Guidance for Industry: Pharmacogenomics Data Submissions.

  • Van Loon, J. A., and Weinshilboum, R. M. (1982). Thiopurine methyltransferase biochemical genetics: Human lymphocyte activity. Biochem. Genet. 20:637–658.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., and Weinshilboum, R. M. (2006). Thiopurine S-methyltransferase (TPMT) pharmacogenetics: Insights, challenges and future directions. Oncogene. Rev. 25:1629–1638.

    Google Scholar 

  • Wang, L., Sullivan, W., Toft, D., and Weinshilboum, R. (2003). Thiopurine S-methyltransferase pharmacogenetics: Chaperone protein association and allozyme degradation. Pharmacogenetics 13:555–564.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Nguyen, T. V., McLaughlin, R. W., Sikkink, L. A., Ramirez-Alvarado, M., and Weinshilboum, R. M. (2005). Human thiopurine S-methyltransferase (TPMT) pharmacogenetics: Variant misfolding and aggresome formation. Proc. Natl. Acad. Sci. U.S.A. 102:9394–9399.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R. (2001). Thiopurine pharmacogenetics: Clinical and molecular studies of thiopurine methyltransferase. Drug Met. Dispos. 29:601–605.

    CAS  Google Scholar 

  • Weinshilboum, R. (2003). Inheritance and drug response. New Engl. J. Med. 348:529–537.

    Article  PubMed  Google Scholar 

  • Weinshilboum, R., and Wang, L. (2004a). Pharmacogenomics: Bench to bedside. Nat. Rev. Drug Discovery 3:739–748.

    Article  CAS  Google Scholar 

  • Weinshilboum, R., and Wang, L. (2004b). Pharmacogenetics: Inherited variation in amino acid sequence and altered protein quantity. Clin. Pharmacol. Ther. 75:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M. (1978). Serum dopamine β-hydroxylase. Pharmacol. Rev. 30:133–166.

    PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M., and Axelrod, J. (1971). Serum dopamine beta-hydroxylase activity. Cir. Res. 28:307–315.

    CAS  Google Scholar 

  • Weinshilboum, R. M., and Raymond, F. A. (1977). Inheritance of low erythrocyte catechol O-methyltransferase activity in man. Am. J. Human Genet. 29:125–135.

    CAS  Google Scholar 

  • Weinshilboum, R. M., and Sladek, S. L. (1980). Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Human Genet. 32:651–662.

    CAS  Google Scholar 

  • Weinshilboum, R. M., Raymond, F. A., and Pazmiño, P. A. (1978). Human erythrocyte thiopurine methyltransferase: Radiochemical microassay and biochemical properties. Clin. Chim. Acta 85:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M., Raymond, F. A., Elveback, L. R., and Weidman, W. H. (1974). Correlation of erythrocyte catechol O-methyltransferase activity between siblings. Nature 252:490–491.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M., Schrott, H. G., Raymond, F. A., Weidman, W. H., and Elveback, L. R. (1975). Inheritance of very low serum dopamine β-hydroxylase activity. Am. J. Human Genet. 27:573–585.

    CAS  Google Scholar 

  • Wickner, S., Maurizi, M. R., and Gottesman, S. (1999). Posttranslational quality control: Folding, refolding and degrading proteins. Science 286:1888–1893.

    Article  PubMed  CAS  Google Scholar 

  • Wood, T. C., Salavaggione, O. E., Mukherjee, B., Wang, L., Klumpp, A. F., Thomae, B. A., Eckloff, B. W., Schaid, D. J., Wieben, E. D., and Weinshilboum, R. M. (2006). Human arsenic methyltransferase (AS3MT) pharmacogenetics: Gene resequencing and functional genomics studies. J. Biol. Chem. 281:7364–7373.

    Google Scholar 

  • Woodson, L. C., and Weinshilboum, R. M. (1983). Human kidney thiopurine methyltransferase: Purification and biochemical properties. Biochem. Pharmacol. 32:819–826.

    Article  PubMed  CAS  Google Scholar 

  • Woodson, L. C., Ames, M. M., Selassie, C. D., Hansch, C., and Weinshilboum, R. M. (1983). Thiopurine methyltransferase: Aromatic thiol substrates and inhibition by benzoic acid derivatives. Mol. Pharmacol. 24:471–478.

    PubMed  CAS  Google Scholar 

  • Yager, J. D., and Liehr, J. G. (1996). Molecular mechanisms of estrogen carcinogenesis. Ann. Rev. Pharmacol. Toxicol. 36:203–232.

    Article  CAS  Google Scholar 

  • Yan, L., Otterness, D. M., and Weinshilboum, R. M. (1999). Human nicotinamide N-methyltransferase pharmacogenetic: Gene sequence analysis and promoter characterization. Pharmacogenetics 9:307–316.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Galinsky, R. E., Bernstein, J. A., Liggett, S. B., and Weinshilboum, R. M. (2000a). Histamine N-methyltransferase pharmacogenetics: Association of a common functional polymorphism with asthma. Pharmacogenetics 10:261–266.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Zhang, S., Eiff, B., Szumlanski, C. L., Powers, M., O’Brien, J. F., and Weinshilboum, R. M. (2000b). Thiopurine methyltransferase polymorphic tandem repeat: Genotype-phenotype correlation analysis. Clin. Pharmacol. Ther. 68:210–219.

    Article  PubMed  CAS  Google Scholar 

  • Zubieta, J. K., Heitzeg, M. M., Smith, Y. R., Bueller, J. A., Xu, K., Xu, Y., Koeppe, R. A., Stohler, C. S., and Goldman, D. (2003). COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 299:1240–1243.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Mrs. Luanne Wussow for her assistance with the preparation of this manuscript. Supported in part by NIH grants R01 GM28157, R01 GM35720 and U01 GM61388 (The Pharmacogenetics Research Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Weinshilboum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinshilboum, R.M. Pharmacogenomics: Catechol O-Methyltransferase to Thiopurine S-Methyltransferase. Cell Mol Neurobiol 26, 537–559 (2006). https://doi.org/10.1007/s10571-006-9095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9095-z

KEY WORDS:

Navigation