Skip to main content

Advertisement

Log in

Phosphoproteomic Analysis of Neurotrophin Receptor TrkB Signaling Pathways in Mouse Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

SUMMARY

1. The signaling pathways activated by trkB neurotrophin receptor have been studied in detail in cultured neurons, but little is known about the pathways activated by trkB in intact brain. TrkB is a tyrosine kinase and protein phosphorylation is a key regulatory process in the neuronal signal transduction pathways.

2. We have investigated trkB signaling in the transgenic mice overexpressing trkB in postnatal neurons (trkB.TK) using phosphoproteomics.

3. We found that several proteins are overphosphorylated on tyrosine residues in the brain of trkB.TK mice and identified some of these proteins.

4. We demonstrate that the well characterized signaling molecules mitogen-activated protein kinase (MAPK) and cyclic AMP responsive element binding protein (CREB) were phosphorylated at a higher level in the brain of trkB.TK mice when compared to the wild type littermates. Furthermore, we found that β-actin was tyrosine phosphorylated in the brain of the transgenic mice.

5. Our results demonstrate that phosphoproteomics is a sensitive approach to investigate signaling pathways activated in mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Aigner, L., Arber, S., Kapfhammer, J. P., Laux, T., Schneider, C., Botteri, F., Brenner, H. R., and Caroni, P. (1995). Overexpression of neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Baba, T., Fusaki, N., Shinya, N., Iwamatsu, A., and Hozumi, N. (2003). Actin tyrosine dephosphorylation by the Src homology 1-containing protein tyrosine phosphatase is essential for actin depolymerization after membrane IgM cross-linking. J. Immunol. 170:3762–3768.

    Google Scholar 

  • Barbacid, M. (1994). The Trk family of neurotrophin receptors. J. Neurobiol. 25:1386–1403.

    Article  PubMed  CAS  Google Scholar 

  • Castrén, E. (2004). Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol. 4:58–64.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M., and Greenberg, M. E. (1997). CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047.

    Article  PubMed  CAS  Google Scholar 

  • Gorski, J. A., Balogh, S. A., Wehner, J. M., and Jones, K. R. (2003). Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience 121:341–354.

    Article  PubMed  CAS  Google Scholar 

  • Howard, P. K., Sefton, B. M., and Firtel, R. A. (1993). Tyrosine phosphorylation of actin in Dictyostelium associated with cell-shape changes. Science 259:241–244.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E. J. and Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24:677–736.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E. J., and Reichardt, L. F. (2003). Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72:609–642.

    Article  PubMed  CAS  Google Scholar 

  • Ingraham, H. A., and Evans, G. A. (1986). Characterization of two atypical promoters and alternate mRNA processing in the mouse Thy-12 glycoprotein gene. Mol. Cell Biol. 6:2923–2931.

    PubMed  CAS  Google Scholar 

  • Kameyama, K., Kishi, Y., Yoshimura, M., Kanzawa, N., Sameshima, M., and Tsuchiya, T. (2000). Tyrosine phosphorylation in plant bending. Nature 407:37.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, D. R., and Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 10:381–391.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R., Nanduri, V., Jing, S., Lamballe, F., Tapely, P., Bryant, S., Cordon-Cardo, C., Jones, K. R., Reichardt, L. F., and Barbacid, M. (1991). The TrkB Tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66:395–403.

    Article  PubMed  CAS  Google Scholar 

  • Koponen, E., Lakso, M., and Castren, E. (2004a). Overexpression of the full-length neurotrophin receptor TrkB regulates the expression of plasticity-related genes in mouse brain. Brain Res. Mol. Brain Res. 130:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Koponen, E., Voikar, V., Riekki, R., Saarelainen, T., Rauramaa, T., Rauvala, H., Taira, T., and Castrén, E. (2004b). Transgenic mice overexpressing the full-length neurotrophin receptor TrkB exhibit increased activation of the TrkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol. Cell Neurosci. 26:166–181.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lim, Y. P., Wong, C. Y., Ooi, L. L., Druker, B. J., and Epstein, R. J. (2004). Selective tyrosine hyperphosphorylation of cytoskeletal and stress proteins in primary human breast cancers: implications for adjuvant use of kinase-inhibitory drugs. Clin. Cancer Res. 10:3980–3987.

    Article  PubMed  CAS  Google Scholar 

  • Linnarsson, S., Bjorklund, A., and Ernfors, P. (1997). Learning deficit in BDNF mutant mice. Eur. J. Neurosci. 9:2581–2587.

    Article  PubMed  CAS  Google Scholar 

  • Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learn Mem. 10:86–98.

    Article  PubMed  Google Scholar 

  • Mann, M., Ong, S. E., Gronborg, M., Steen, H., Jensen, O. N., and Pandey, A. (2002). Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 20:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Minichiello, L., Calella, A. M., Medina, D. L., Bonhoeffer, T., Klein, R., and Korte, M. (2002). Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137.

    Article  PubMed  CAS  Google Scholar 

  • Minichiello, L., Casagranda, F., Tatche, R. S., Stucky, C. L., Postigo, A., Lewin, G. R., Davies, A. M., and Klein, R. (1998). Point mutation in TrkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21:335–345.

    Article  PubMed  CAS  Google Scholar 

  • Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H. P., Bonhoeffer, T., and Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24:401–414.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, K. L., and Stults, J. T. (1997). Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 18:349–359.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, A., Andersen, J. S., and Mann, M. (2000). Use of mass spectrometry to study signaling pathways. Sci. STKE. 2000:L1.

    Article  Google Scholar 

  • Pandey, A., and Mann, M. (2000). Proteomics to study genes and genomes. Nature 405:837–846.

    Article  PubMed  CAS  Google Scholar 

  • Saarelainen, T., Hendolin, P., Lucas, G., Koponen, E., Sairanen, M., MacDonald, E., Agerman, K., Haapasalo, A., Nawa, H., Aloyz, R., Ernfors, P., and Castrén, E. (2003). Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23:349–357.

    PubMed  CAS  Google Scholar 

  • Saarelainen, T., Pussinen, R., Koponen, E., Alhonen, L., Wong, G., Sirviö, J., and Castrén, E. (2000). Transgenic mice overexpressing truncated TrkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP. Synapse 38:102–104.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz, A. J., and Greenberg, M. E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68:821–861.

    Article  PubMed  CAS  Google Scholar 

  • Tolwani, R. J., Buckmaster, P. S., Varma, S., Cosgaya, J. M., Wu, Y., Suri, C., and Shooter, E. M. (2002). BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114:795–805.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mass spectrometric protein identifications were performed at the Protein Chemistry Research Group and Core Facility, Institute of Biotechnology,University of Helsinki. We would like to thank MSc. Saara Ihalainen, Dr. Nisse Kalkkinen and Dr. Gunilla Rönnholm for their help in the analysis and Dr. Moshe Finel for his help with electrophoresis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Castrén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, A., Goldsteins, G. & Castrén, E. Phosphoproteomic Analysis of Neurotrophin Receptor TrkB Signaling Pathways in Mouse Brain. Cell Mol Neurobiol 26, 163–175 (2006). https://doi.org/10.1007/s10571-006-9023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9023-2

KEY WORDS:

Navigation