Skip to main content
Log in

Surface grafting of a zwitterionic copolymer onto a cellulose nanofiber membrane for oil/water separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Numerous oil/water mixtures are produced by industrial processes and residential activities, leading to the need for effective separation technologies for wastewater treatment and environmental remediation. In the present study, we report a cellulose-based nanofiber membrane with exceptional hydrophilicity and oleophobicity that rejects organic solvents and allows the penetration of water, thus avoiding fouling by organic residues, which has been a serious issue for conventional oil/water separation membranes. The cellulose-based nanofiber membrane was fabricated through the electrospinning of cellulose acetate and subsequent deacetylation. The resulting surface hydroxyl groups were utilized to bind with the zwitterionic copolymer poly(sulfobetaine methacrylate-r-glycidyl methacrylate) via a ring-opening reaction with the epoxy groups in the copolymer. The resulting copolymer-grafted cellulose nanofiber membrane allowed the highly selective penetration of the water phase from three different oil/water mixtures. The average filtration efficiency was higher than 98% with outstanding reusability and stability over at least 20 cycles following decontamination by washing the membrane with water. The proposed material platform expands the potential use of cellulose materials to a wide range of applications in which hydrophilic coating is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad T, Guria C, Mandal A (2018) Optimal synthesis and operation of low-cost polyvinyl chloride/bentonite ultrafiltration membranes for the purification of oilfield produced water. J Membr Sci 564:859–877

    Article  CAS  Google Scholar 

  • An S, Jeon B, Bae JH, Kim IS, Paeng K, Kim M, Lee H (2019) Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers. Carbohydr Polym 226:115259

    Article  PubMed  Google Scholar 

  • Anwar Sadmani AHM, Andrews RC, Bagley DM (2014) Impact of natural water colloids and cations on the rejection of pharmaceutically active and endocrine disrupting compounds by nanofiltration. J Membr Sci 450:272–281

    Article  Google Scholar 

  • Atila D, Keskin D, Tezcaner A (2015) Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr Polym 133:251–261

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Zhang X, He F, Yang Z, Xie M, Ren H, Wu D, Xu J, Luo C (2023) Engineering polyamide nanofiltration membrane with bifunctional terpolymer brushes for antifouling and antimicrobial properties. Desalination 558:116642

    Article  Google Scholar 

  • Biermann O, Hädicke E, Koltzenburg S, Müller F (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed 40:3822–3825

    Article  CAS  Google Scholar 

  • Chambers WS, Hopkins JG, Richards SM (2021) A review of per- and polyfluorinated alkyl substance impairment of reproduction. Front Toxicol 3:732436

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Fan H, Zha X, Wang W, Wu Y, Xiong Y, Yan K, Wang Y, Wang D (2021) Fabrication of silica/PVA-co-PE nanofiber membrane for oil/water separation. Fash Text 8:1–2

    Article  Google Scholar 

  • Chiang Y-C, Chang Y, Higuchi A, Chen W-Y, Ruaan R-C (2009) Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J Membr Sci 339:151–159

    Article  CAS  Google Scholar 

  • Chiao Y-H, Belle M, Ang MY, Huang Y-X, DePaz SS, Chang Y, Almodovar J, Wickramasinghe SR (2020) A “graft to” electrospun zwitterionic bilayer membrane for the separation of hydraulic fracturing-produced water via membrane distillation. Membranes 10:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HY, Bae JH, Hasegawa Y, An S, Kim IS, Lee H, Kim M (2020) Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym 234:115881

    Article  CAS  PubMed  Google Scholar 

  • Chou Y-N, Wen T-C, Chang Y (2016) Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomater 40:78–91

    Article  CAS  PubMed  Google Scholar 

  • Couto CF, Lange LC, Amaral MCS (2018) A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J Water Process Eng 26:156–175

    Article  Google Scholar 

  • d’Halluin M, Rull-Barrull J, Bretel G, Labrugère C, Le Grognec E, Felpin F-X (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain Chem Eng 5:1965–1973

    Article  Google Scholar 

  • Duong PHH, Kuehl VA, Mastorovich B, Hoberg JO, Parkinson BA, Li-Oakey KD (2019) Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J Membr Sci 574:338–348

    Article  CAS  Google Scholar 

  • Fan Y, Migliore N, Raffa P, Bose RK, Picchioni F (2019) Synthesis of zwitterionic copolymers via copper-mediated aqueous living radical grafting polymerization on starch. Polymers 11:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Le, Tan YZ, Chen Xu, Xiao T, Trinh TA, Chew JW (2019) Zwitterionic grafting of sulfobetaine methacrylate (SBMA) on hydrophobic PVDF membranes for enhanced anti-fouling and anti-wetting in the membrane distillation of oil emulsions. J Membr Sci 588:117196

    Article  CAS  Google Scholar 

  • Hanafy M, Nabih HI (2007) Treatment of oily wastewater using dissolved air flotation technique. Energy Sources A Recov Util Environ Eff 29:143–159

    Article  CAS  Google Scholar 

  • He H, Jiang H, Chen C, Ouyang L, Jiang W, Yuan S (2019) Efficient oil/water separation by zwitterionic poly(sulfobetaine methacrylate)@Cu(OH)2 nanoneedle array-coated copper meshes with superwetting and antifouling properties. ACS Sustain Chem Eng 7:13815–13826

    Article  CAS  Google Scholar 

  • He Ke, Duan H, Chen GY, Liu X, Yang W, Wang D (2015) Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil–water separation membranes. ACS Nano 9:9188–9198

    Article  CAS  PubMed  Google Scholar 

  • Howarter JA, Youngblood JP (2009) Amphiphile grafted membranes for the separation of oil-in-water dispersions. J Colloid Interface Sci 329:127–132

    Article  CAS  PubMed  Google Scholar 

  • Ikhsan SNW, Abdullah N, Yusof N, Aziz F, Misdan N, Hairom NHH (2017) Polyethersulfone/HFO mixed matrix membrane for enhanced oily wastewater rejection. J Appl Membr Sci Technol 20:11–17

    Google Scholar 

  • Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    Article  CAS  PubMed  Google Scholar 

  • Keefe AJ, Jiang S (2012) Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 4:59–63

    Article  CAS  Google Scholar 

  • Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107

    Article  CAS  Google Scholar 

  • Kim M, Lee H, Kim M, Park YC (2021) Coloration and chromatic sensing behavior of electrospun cellulose fibers with curcumin nanomaterials. Nanomaterials 11:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil–water separation. Nat Commun 3:1–8

    Article  Google Scholar 

  • Lai GS, Yusob MHM, Lau WJ, Jamshidi Gohari R, Emadzadeh D, Ismail AF, Goh PS, Isloor AM, Rezaei-Dasht Arzhandi M (2017) Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil-water separation. Sep Purif Technol 178:113–121

    Article  CAS  Google Scholar 

  • Li G, Pan J, Han J, Chen C, Juntao Lu, Zhuang L (2013) Ultrathin composite membrane of alkaline polymer electrolyte for fuel cell applications. J Mater Chem A 1:12497–12502

    Article  CAS  Google Scholar 

  • Lien C-C, Chen P-J, Venault A, Tang S-H, Ying Fu, Dizon GV, Aimar P, Chang Y (2019) A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. J Membr Sci 584:148–160

    Article  CAS  Google Scholar 

  • Lin H-T, Venault A, Chang Y (2019) Zwitterionized chitosan based soft membranes for diabetic wound healing. J Membr Sci 591:117319

    Article  CAS  Google Scholar 

  • National Response Team (2011) On scene coordinator report: Deepwater horizon oil spill (US Department of Homeland Security, US Coast Guard)

  • Panatdasirisuk W, Liao Z, Vongsetskul T, Yang S (2017) Separation of oil-in-water emulsions using hydrophilic electrospun membranes with anisotropic pores. Langmuir 33:5872–5878

    Article  CAS  PubMed  Google Scholar 

  • Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2014) Introduction to spectroscopy. Cengage learning, Boston

    Google Scholar 

  • Rathod PV, Mujmule RB, Chung W-J, Jadhav AR, Kim H (2019) Efficient dehydration of glucose, sucrose, and fructose to 5-hydroxymethylfurfural using tri-cationic ionic liquids. Catal Lett 149:672–687

    Article  CAS  Google Scholar 

  • Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasena J, Liangbing Hu (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50:13296–13299

    Article  CAS  Google Scholar 

  • Sivashanmugan K, Liu P-C, Tsai K-W, Chou Y-N, Lin C-H, Chang Y, Wen T-C (2017) An anti-fouling nanoplasmonic SERS substrate for trapping and releasing a cationic fluorescent tag from human blood solution. Nanoscale 9:2865–2874

    Article  CAS  PubMed  Google Scholar 

  • Stahl T, Mattern D, Brunn H (2011) Toxicology of perfluorinated compounds. Environ Sci Eur 23:38

    Article  Google Scholar 

  • Strathmann H (1981) Membrane separation processes. J Membr Sci 9:121–189

    Article  CAS  Google Scholar 

  • Sultanov F, Daulbaev C, Bakbolat B, Daulbaev O, Mansurova Z (2020) Hydrophilic-oleophobic membranes based on hydrolysis products of methoxytrimethylsilane with additions of silica particles. J Eng Phys Thermophys 93:409–415

    Article  CAS  Google Scholar 

  • Tran DNH, Kabiri S, Sim TR, Losic D (2015) Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges. Environ Sci Water Res Technol 1:298–305

    Article  CAS  Google Scholar 

  • Vogs C, Johanson G, Näslund M, Wulff S, Sjödin M, Hellstrandh M, Lindberg J, Wincent E (2019) Toxicokinetics of perfluorinated alkyl acids influences their toxic potency in the zebrafish embryo (Danio rerio). Environ Sci Technol 53:3898–3907

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Sui Q, Shu-Guang Lu, Zhao W-T, Qiu Z-F, Miao Z-W, Gang Yu (2014a) Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. Environ Sci Pollut Res 21:4276–4285

    Article  CAS  Google Scholar 

  • Wang F, Lei S, Xue M, Junfei Ou, Li W (2014b) In situ separation and collection of oil from water surface via a novel superoleophilic and superhydrophobic oil containment boom. Langmuir 30:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Gao G, Zhou Y, Ting Xu, Chen J, Wang R, Zhang R, Jun Fu (2019) Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl Mater Interfaces 11:3506–3515

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tao S, An Y (2013) A reverse membrane emulsification process based on a hierarchically porous monolith for high efficiency water–oil separation. J Mater Chem A 1:1701–1708

    Article  CAS  Google Scholar 

  • Wen Q, Di J, Jiang L, Jihong Yu, Ruren Xu (2013) Zeolite-coated mesh film for efficient oil–water separation. Chem Sci 4:591–595

    Article  CAS  Google Scholar 

  • Xie Yi, Tang C, Wang Z, Yuanting Xu, Zhao W, Sun S, Zhao C (2017) Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J Mater Chem B 5:7186–7193

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Cao Y, Liu Na, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460

    Article  CAS  Google Scholar 

  • Yan S, Song L, Li Z, Luan S, Shi H, Xin Z, Li S, Yang Y, Yin J (2016) Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies. J Biomater Sci Polym Ed 27:1397–1412

    Article  CAS  PubMed  Google Scholar 

  • Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Amy G (2010) Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J Membr Sci 362:334–345

    Article  CAS  Google Scholar 

  • Ye S, Cao Q, Wang Q, Wang T, Peng Q (2016) A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil–water separation. Sci Rep 6:1–9

    Article  Google Scholar 

  • Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Jia N, Cheng L, Wang R, Gao C (2019) Constructing antifouling hybrid membranes with hierarchical hybrid nanoparticles for oil-in-water emulsion separation. ACS Omega 4:2320–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Tian M, Hou J, Wang J, Lin J, Zhang Y, Liua J, Van der Bruggenc B (2016) Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J Mater Chem A 4:1980–1990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for support of National Research Foundation of Korea (NRF) (Grant No. 2021R1A2C1093999 and 2022R1F1A1074129) and Korea Institute of Industrial Technology (KITECH).

Funding

This work was supported by National Research Foundation of Korea (NRF) (Grant No. 2021R1A2C1093999 and 2022R1F1A1074129) and Korea Institute of Industrial Technology (KITECH).

Author information

Authors and Affiliations

Authors

Contributions

DS and SK contributed equally to this work. DS, SK, and DK conducted the experiments and wrote the manuscript. JK synthesized the poly(SBMA-r-GMA), and investigated the XPS results. SR and YL conducted the spectroscopic analysis. MK and HL conceived, planned, and oversaw the study. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Myungwoong Kim or Hoik Lee.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

All authors have approved the manuscript and agree to this submission.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 81674 kb)

Supplementary file2 (DOCX 1320 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, D., Kim, S., Kim, J. et al. Surface grafting of a zwitterionic copolymer onto a cellulose nanofiber membrane for oil/water separation. Cellulose 30, 9635–9645 (2023). https://doi.org/10.1007/s10570-023-05475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05475-3

Keywords

Navigation