Skip to main content
Log in

Functionalization of cotton fabrics by sol-gel method using ionic liquids with high-hydrophobic, excellent water repellent, oil/water separation, and self-cleaning properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, we report on the design of multifunctional cotton fabric with high hydrophobic, water-repellent, water-oil separation, and self-cleaning properties by the sol-gel method using ionic liquids. To do so, sols containing 1-methylimidazolium chloride Propyltriethoxysilane [MCPTS] and 1-pyridinium chloride Propyltriethoxysilane [PCPTS] salts were synthesized and deposited on the surface of the cellulose substrate by the pad-dry-cure process. Finally, the treated fabrics were impregnated in diluted solutions of hexafluorophosphoric acid (HPF6), bis(trifluoromethane) sulfonamide lithium (Li (CF3SO2) 2 N), sodium tetrafluoroborate (NaBF4), and sodium acetate (NaCH3CO2) to achieve the metathesis reaction. The surface morphology of the as-prepared cotton fabric was characterized by the Scanning electron microscope. It shows the presence of a very thin layer of coating on the cotton fiber surface. The Fourier Transform InfraRed (FT-IR) and Energy Dispersive Spectroscopy (EDS) spectrum were exploited in order to characterize the chemical composition of the treated and untreated fabrics. The results showed that the functionalized cotton fabrics by the sol-gel method using ionic liquids exhibited high hydrophobic, excellent water-repellent, and self-cleaning properties. Furthermore, the coated cotton fabric is able to separate a series of oil-water mixtures, which makes it potentially useful in practical and industrial applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ahuja D, Dhiman S, Rattan G et al (2021) Superhydrophobic modification of cellulose sponge fabricated from discarded jute bags for oil water separation. J Environ Chem Eng 9:105063

    CAS  Google Scholar 

  • Ali A, Shaker K, Nawab Y et al (2016) Hydrophobic treatment of natural fibers and their composites-a review. J Ind Text 47:2153–2183. https://doi.org/10.1177/1528083716654468

    Article  CAS  Google Scholar 

  • Arputharaj A, Prasad V, Saxena S et al (2016) Ionic liquid mediated application of nano zinc oxide on cotton fabric for multi-functional properties. J Text Inst 3:1–9. https://doi.org/10.1080/00405000.2016.1222984

    Article  CAS  Google Scholar 

  • Bao X-M, Cui J-F, Sun H-X et al (2014) Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles. Appl Surf Sci 303:473–480

    CAS  Google Scholar 

  • Bentis A, Boukhriss A, Boyer D, Gmouh S (2017) Development of flame retardant cotton fabric based on ionic liquids via sol-gel technique. In: IOP Conference Series Mater Science Eng IOP Publishing, pp 122001

  • Bentis A, Boukhriss A, Bouchti ME, Gmouh S (2019a) Recent advances in preparation, modification and functionalization of cotton fabric. Cotton fabrics: preparation, synthesis and application. Nova Science Publishers, Inc, New York, pp 1–35

    Google Scholar 

  • Bentis A, Boukhriss A, Grancaric AM et al (2019) Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions. Cellulose 6:1–15

    Google Scholar 

  • Bentis A, Boukhriss A, Gmouh S (2020) Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. J Solgel Sci Technol 94:719–730

    CAS  Google Scholar 

  • Bittner RW, Bica K, Hoffmann H (2017) Fluorine-free, liquid-repellent surfaces made from ionic liquid-infused nanostructured silicon. Monatshefte fur chemie 148:167–177. https://doi.org/10.1007/s00706-016-1888-2

    Article  CAS  PubMed  Google Scholar 

  • Boukhriss A, Boyer D, Hannache H et al (2015) Sol–gel based water repellent coatings for textiles. Cellulose 22:1415–1425

    CAS  Google Scholar 

  • Boukhriss A, Gmouh S, Hannach H et al (2016a) Treatment of cotton fabrics by ionic liquid with PF6-anion for enhancing their flame retardancy and water repellency. Cellulose 23:3355–3364. https://doi.org/10.1007/s10570-016-1016-9

    Article  CAS  Google Scholar 

  • Boukhriss A, Gmouh S, Hannach H et al (2016b) Treatment of cotton fabrics by ionic liquid with PF6-anion for enhancing their flame retardancy and water repellency. Cellulose 23:3355–3364. https://doi.org/10.1007/s10570-016-1016-9

    Article  CAS  Google Scholar 

  • Branda F, Malucelli G, Durante M et al (2016) Silica treatments: a fire retardant strategy for hemp fabric/epoxy composites. Polymers 8:313

    PubMed  PubMed Central  Google Scholar 

  • Buffeteau T, Grondin J, Lassègues J-C (2010) Infrared spectroscopy of ionic liquids: quantitative aspects and determination of optical constants. Appl Spectrosc 64:112–119

    CAS  PubMed  Google Scholar 

  • Chen F-F, Zhu Y-J, Xiong Z-C et al (2016) Highly flexible superhydrophobic and fire-resistant layered inorganic paper. ACS Appl Mater Interfaces 8:34715–34724

    CAS  PubMed  Google Scholar 

  • Cheng Z, Li C, Lai H et al (2016) Recycled superwetting nanostructured copper mesh film: toward bidirectional separation of emulsified oil/water mixtures. Adv Mater Interfaces 3:1600370

    Google Scholar 

  • Cheng Q, Liu C, Liu S (2018) Fabrication of a robust superhydrophobic polyurethane sponge for oil–water separation. Surf Eng 5:1–8. https://doi.org/10.1080/02670844.2018.1429204

    Article  CAS  Google Scholar 

  • Colleoni C, Donelli I, Freddi G et al (2013) A novel sol-gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor. Surf Coat Technol 235:192–203

    CAS  Google Scholar 

  • Dang M, Deng QL, Fang GZ et al (2018) Bifunctional supported ionic liquid-based smart films for dyes adsorption and photodegradation. J Colloid Interface Sci 530:302–311. https://doi.org/10.1016/j.jcis.2018.06.098

    Article  CAS  PubMed  Google Scholar 

  • Daoud WA (2013) Self-cleaning materials and surfaces: a nanotechnology approach. Science 5:9874

    Google Scholar 

  • Döbbelin M, Marcilla R, Tollan C et al (2008) A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. J Mater Chem 18:5354. https://doi.org/10.1039/b808723g

    Article  CAS  Google Scholar 

  • Döbbelin M, Tena-Zaera R, Marcilla R et al (2009) Multiresponsive PEDOT-Ionic Liquid materials for the design of surfaces with switchable wettability. Adv Funct Mater 19:3326–3333. https://doi.org/10.1002/adfm.200900863

    Article  CAS  Google Scholar 

  • El Messoudi M, Boukhriss A, Bentis A et al (2022) Flame retardant finishing of cotton fabric based on ionic liquid compounds containing boron prepared with the sol-gel method. J Coat Technol Res 19:1609–1619

    Google Scholar 

  • Fan W, Zhu Y, Xi G et al (2016) Wear-resistant cotton fabrics modified by PU coatings prepared via mist polymerization. J Appl Polym Sci 133:5898

    Google Scholar 

  • Gao Q, Hu J, Li R et al (2016) Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via gamma-radiation-induced graft polymerization. Carbohydr Polym 149:308–316. https://doi.org/10.1016/j.carbpol.2016.04.124

    Article  CAS  PubMed  Google Scholar 

  • Ge Q, Amy GL, Chung T-S (2017) Forward osmosis for oily wastewater reclamation: multi-charged oxalic acid complexes as draw solutes. Water Res 122:580–590

    CAS  PubMed  Google Scholar 

  • Gu S, Yang L, Huang W et al (2017) Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry. Cellulose 24:2635–2646. https://doi.org/10.1007/s10570-017-1274-1

    Article  CAS  Google Scholar 

  • Guo J, Yang F, Guo Z (2016) Fabrication of stable and durable superhydrophobic surface on copper substrates for oil–water separation and ice-over delay. J Colloid Interface Sci 466:36–43

    CAS  PubMed  Google Scholar 

  • Hassan Hassan Abdellatif F, Babin J, Arnal-Herault C et al (2016) Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: influence of the cation. Carbohydr Polym 147:313–322. https://doi.org/10.1016/j.carbpol.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  • Heckenthaler T, Sadhujan S, Morgenstern Y et al (2019) Self-cleaning mechanism: why nanotexture and hydrophobicity matter. Langmuir 35:15526–15534

    CAS  PubMed  Google Scholar 

  • Hojniak SD, Silverwood IP, Khan AL et al (2014) Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs). J Phys Chem B 118:7440–7449

    CAS  PubMed  Google Scholar 

  • Hu J, Gao Q, Xu L et al (2018) Functionalization of cotton fabrics with highly durable polysiloxane–TiO2 hybrid layers: potential applications for photo-induced water–oil separation, UV shielding, and self-cleaning. J Mater Chem A 6:6085–6095. https://doi.org/10.1039/c7ta11231a

    Article  CAS  Google Scholar 

  • Huang M, Si Y, Tang X et al (2013) Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J Mater Chem A 1:14071. https://doi.org/10.1039/c3ta13385k

    Article  CAS  Google Scholar 

  • Hussain A, Calabria-Holley J, Schorr D et al (2018) Hydrophobicity of hemp shiv treated with sol-gel coatings. Appl Surf Sci 434:850–860. https://doi.org/10.1016/j.apsusc.2017.10.210

    Article  CAS  Google Scholar 

  • Jiang B, Chen Z, Sun Y et al (2018a) Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method. Appl Surf Sci 441:554–563. https://doi.org/10.1016/j.apsusc.2018.01.285

    Article  CAS  Google Scholar 

  • Jiang B, Chen Z, Sun Y et al (2018b) Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method. Appl Surf Sci 441:554–563. https://doi.org/10.1016/j.apsusc.2018.01.285

    Article  CAS  Google Scholar 

  • Ke Q, Jin Y, Jiang P, Yu J (2014) Oil/water separation performances of superhydrophobic and superoleophilic sponges. Langmuir 30:13137–13142

    CAS  PubMed  Google Scholar 

  • Khan SA, Zulfiqar U, Hussain SZ et al (2017) Fabrication of superhydrophobic filter paper and foam for oil–water separation based on silica nanoparticles from sodium silicate. J Solgel Sci Technol 81:912–920

    CAS  Google Scholar 

  • Khan MZ, Baheti V, Militky J et al (2018) Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy (octadecyl) silane coated cotton fabrics. Carbohydr Polym 202:571–580

    CAS  PubMed  Google Scholar 

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590

    CAS  PubMed  Google Scholar 

  • Li H, Xin B, Feng L, Hao J (2014) Stable ZnO/ionic liquid hybrid materials: novel dual-responsive superhydrophobic layers to light and anions. Sci China Chem 57:1002–1009

    CAS  Google Scholar 

  • Li J, Yan L, Tang X et al (2016) Robust superhydrophobic fabric bag filled with polyurethane sponges used for vacuum-assisted continuous and ultrafast absorption and Collection of oils from Water. Science 3:1500770. https://doi.org/10.1002/admi.201500770

    Article  CAS  Google Scholar 

  • Liang L, Su M, Zheng C et al (2017) Fabrication of hydrophobic/oleophilic cotton fabric by mussel-inspired chemistry for oil/water separation. Fibers Polym 18:2307–2314. https://doi.org/10.1007/s12221-017-7662-1

    Article  CAS  Google Scholar 

  • Liu H, Jiang L (2016) Wettability by Ionic Liquids. Small 12:9–15. https://doi.org/10.1002/smll.201501526

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ma M, Zang D et al (2014a) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. https://doi.org/10.1016/j.carbpol.2013.12.022

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ma M, Zang D et al (2014b) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480–487. https://doi.org/10.1016/j.carbpol.2013.12.022

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ding Y, Ao Z et al (2015) Fabricating surfaces with tunable wettability and adhesion by ionic liquids in a wide range. Small 11:1782–1786. https://doi.org/10.1002/smll.201403021

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Cheng H, Fane AG et al (2016) Recent development of Advanced materials with special wettability for selective Oil/Water separation. Small 12:2186–2202. https://doi.org/10.1002/smll.201503685

    Article  CAS  PubMed  Google Scholar 

  • Mahltig B, Böttcher H (2003) Modified silica sol coatings for water-repellent textiles. J Solgel Sci Technol 27:43–52

    CAS  Google Scholar 

  • Mahltig B, Audenaert F, Böttcher H (2005) Hydrophobic silica sol coatings on textiles—the influence of solvent and sol concentration. J Solgel Sci Technol 34:103–109

    CAS  Google Scholar 

  • Meksi N, Moussa A (2017) A review of progress in the ecological application of ionic liquids in textile processes. J Clean Prod 161:105–126

    CAS  Google Scholar 

  • Mihkel K (2000) Physical and chemical properties of ionic liquids based on the dialkkylimidazo-lium cation. Est Proc Acad Sci Chem 49:145–155

    Google Scholar 

  • Panda A, Varshney P, Mohapatra SS, Kumar A (2018) Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil-water separation properties. Carbohydr Polym 181:1052–1060. https://doi.org/10.1016/j.carbpol.2017.11.044

    Article  CAS  PubMed  Google Scholar 

  • Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2013) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364

    CAS  Google Scholar 

  • Piltan S, Seyfi J, Hejazi I et al (2016) Superhydrophobic filter paper via an improved phase separation process for oil/water separation: study on surface morphology, composition and wettability. Cellulose 23:3913–3924. https://doi.org/10.1007/s10570-016-1059-y

    Article  CAS  Google Scholar 

  • Qian X, Song L, Bihe Y et al (2014) Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater Chem Phys 143:1243–1252. https://doi.org/10.1016/j.matchemphys.2013.11.029

    Article  CAS  Google Scholar 

  • Restolho J, Mata JL, Saramago B (2009) On the interfacial behavior of ionic liquids: surface tensions and contact angles. J Colloid Interface Sci 340:82–86. https://doi.org/10.1016/j.jcis.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Tenjimbayashi M, Manabe K, Shiratori S (2015) Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl Mater Interfaces 8:651–659

    PubMed  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013) One-pot sonochemical synthesis of superhydrophobic organic–inorganic hybrid coatings on cotton cellulose. Cellulose 20:3039–3051. https://doi.org/10.1007/s10570-013-0040-2

    Article  CAS  Google Scholar 

  • Singh AK, Singh JK (2017) Fabrication of durable superhydrophobic coatings on cotton fabrics with photocatalytic activity by fluorine-free chemical modification for dual-functional water purification. New J Chem 41:4618–4628

    CAS  Google Scholar 

  • Somers AE, Howlett PC, MacFarlane DR, Forsyth M (2013) A review of ionic liquid lubricants. Lubricants 1:3–21

    Google Scholar 

  • Tariq M, Freire MG, Saramago B et al (2012) Surface tension of ionic liquids and ionic liquid solutions. Chem Soc Rev 41:829–868

    CAS  PubMed  Google Scholar 

  • Valbe R, Tarkanovskaja M, Mäeorg U et al (2014) Elaboration of hybrid cotton fibers treated with an ionogel/carbon nanotube mixture using a sol-gel approach. Open Chem. https://doi.org/10.1515/chem-2015-0031

    Article  Google Scholar 

  • Wang J, Zheng Y, Wang A (2012) Superhydrophobic kapok fiber oil-absorbent: preparation and high oil absorbency. Chem Eng J 213:1–7

    CAS  Google Scholar 

  • Wang S, Sui X, Li Y et al (2016) Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym Degrad Stab 128:22–28

    CAS  Google Scholar 

  • Wu L, Li L, Li B et al (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946. https://doi.org/10.1021/am5091353

    Article  CAS  PubMed  Google Scholar 

  • Xin B, Hao J (2014) Imidazolium-based ionic liquids grafted on solid surfaces. Chem Soc Rev 43:7171–7187

    CAS  PubMed  Google Scholar 

  • Xin B, Wang L, Jia C (2015) Stably superhydrophobic (IL/TiO2) n hybrid films: Intelligent self-cleaning materials. Appl Surf Sci 357:2248–2254

    CAS  Google Scholar 

  • Xue C-H, Ji P-T, Zhang P et al (2013) Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation. Appl Surf Sci 284:464–471

    CAS  Google Scholar 

  • Yan T, Chen X, Zhang T et al (2018) A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation. Chem Eng J 347:52–63. https://doi.org/10.1016/j.cej.2018.04.021

    Article  CAS  Google Scholar 

  • Yang SH, Liu C-H, Hsu W-T, Chen H (2009) Preparation of super-hydrophobic films using pulsed hexafluorobenzene plasma. Surf Coat Technol 203:1379–1383

    CAS  Google Scholar 

  • Yanlong S, Wu Y, Xiaojuan F et al (2016) Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil–water separation. A Appl Surf Sci 367:493–499

    Google Scholar 

  • Zhang J, France P, Radomyselskiy A et al (2003) Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film. J Appl Polym Sci 88:1473–1481

    CAS  Google Scholar 

  • Zhang J, Li B, Wu L, Wang A (2013) Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem Commun 49:11509–11511

    CAS  Google Scholar 

  • Zhang C, Zhang S, Gao P et al (2014) Superhydrophobic hybrid films prepared from silica nanoparticles and ionic liquids via layer-by-layer self-assembly. Thin Solid Films 570:27–32

    CAS  Google Scholar 

  • Zhang D, Williams BL, Shrestha SB et al (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci 505:892–899. https://doi.org/10.1016/j.jcis.2017.06.087

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shu Z, Yang N et al (2018) Improvement in antifouling and separation performance of PVDF hybrid membrane by incorporation of room-temperature ionic liquids grafted halloysite nanotubes for oil–water separation. J Appl Polym Sci 135:46278

    Google Scholar 

  • Zhou H, Wang H, Niu H et al (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv mater 24:2409–2412

    CAS  PubMed  Google Scholar 

  • Zhou X, Zhang Z, Xu X et al (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5:7208–7214

    CAS  PubMed  Google Scholar 

  • Zhou Q, Chen G, Xing T (2018a) Facile construction of robust superhydrophobic tea polyphenol/Fe@cotton fabric for self-cleaning and efficient oil–water separation. Cellulose 25:1513–1525. https://doi.org/10.1007/s10570-018-1654-1

    Article  CAS  Google Scholar 

  • Zhou Q, Chen G, Xing T (2018b) Facile construction of robust superhydrophobic tea polyphenol/Fe@cotton fabric for self-cleaning and efficient oil–water separation. Cellulose 25:1513–1525. https://doi.org/10.1007/s10570-018-1654-1

    Article  CAS  Google Scholar 

  • Zhu J, Liu B, Li L et al (2016) Simple and green fabrication of a Superhydrophobic Surface by one-step immersion for continuous Oil/Water separation. J Phys Chem A 120:5617–5623. https://doi.org/10.1021/acs.jpca.6b06146

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann J, Reifler FA, Fortunato G et al (2008) A simple, one-step approach to durable and robust superhydrophobic textiles. Adv Funct Mater 18:3662–3669

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Higher School of Textiles and Clothing Industries (ESITH) for supporting this work.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Aziz Bentis] and [Aicha BOUKHRISS]. The first draft of the manuscript was written by [Aziz Bentis ] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Said Gmouh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

All authors agree to this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentis, A., Boukhriss, A., Zahouily, M. et al. Functionalization of cotton fabrics by sol-gel method using ionic liquids with high-hydrophobic, excellent water repellent, oil/water separation, and self-cleaning properties. Cellulose 30, 6719–6740 (2023). https://doi.org/10.1007/s10570-023-05276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05276-8

Keywords

Navigation