Skip to main content

Advertisement

Log in

A novel life management model consists of chemical aging model and electrical-thermal aging model for power transformers using a new activation energy calculation method

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Power transformers aging is investigated by a chemical aging model and an electrical-thermal aging model. In the chemical aging model, oil and cellulose chemical status are considered, but transformer load is not considered, while in the electrical-thermal model, only the effects of load and hotspot temperature are considered. The primary purpose of this paper is to combine both aging models to achieve a transformer life management model that considers the effect of all chemical parameters and the transformer load current simultaneously. Combining one chemical and one electrical-thermal aging model to reach a life management model for the transformer means that the remaining life of the transformer is first estimated using the chemical aging model by the provided equations for pre-exponential factor and activation energy in this paper. For this estimation, after conducting scientific studies, including experimental studies and computation on measurement results, an empirical mathematical equation will be presented to calculate the activation energy. Then using the presented equation, the remaining life will be estimated more accurately. Then, in the next step, this estimated life will be used in the electrical-thermal aging model and finally, a hotspot temperature will be calculated for the transformer. Finally, using the proposed hotspot temperature value and presented equations in this paper, a load current will be determined, which is recommended that the transformer load should not exceed that value. Finally, the proposed equation for activation energy calculation and the presented life management model validation will be verified using some transformers measurement results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan D (1993) Practical life-assessment technique for aged transformer insulation. IEE Proc A (sci Measurement Technol) 140(5):404–408

    Article  CAS  Google Scholar 

  • Arakelian V (2002) Effective diagnostics for oil-filled equipment. IEEE Electr Insul Mag 18(6):26–38

    Article  Google Scholar 

  • Arroyo OH, Jalbert J, Fofana I, Ryadi M (2017) Temperature dependence of methanol and the tensile strength of insulation paper: kinetics of the changes of mechanical properties during ageing. Cellulose 24(2):1031–1039

    Article  CAS  Google Scholar 

  • Ballal MS, Jaiswal GC, Tutkane DR, Venikar PA, Mishra MK, Suryawanshi HM (2017) Online condition monitoring system for substation and service transformers. IET Electr Power Appl 11(7):1187–1195

    Article  Google Scholar 

  • Battista O, Coppick S, Howsmon J, Morehead F, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48(2):333–335

    Article  CAS  Google Scholar 

  • Bertrand H, Besner S, Gauvin M, Goulet J, Jalbert J (2010) Advanced monitoring and modelling methods for power transformer asset management. Eur J Elect Eng 13(5–6):591–620

    Article  Google Scholar 

  • Brown RE, Willis HL (2006) The economics of aging infrastructure. IEEE Power Energ Mag 4(3):36–43

    Article  Google Scholar 

  • Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12(4):445–447

    Article  CAS  Google Scholar 

  • Calvini P (2014) On the meaning of the Emsley, Ding & Wang and Calvini equations applied to the degradation of cellulose. Cellulose 21(3):1127–1134

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Lorenzoni M, Pedemonte E (2004) Viscometric determination of dialdehyde content in periodate oxycellulose. Part I Methodol Cellul 11(1):99–107

    CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of dialdehyde content in periodate oxycellulose part II Topochemistry of oxidation. Cellulose 13(5):571–579

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Merlani AL (2008) On the kinetics of cellulose degradation: looking beyond the pseudo zero order rate equation. Cellulose 15(2):193–203

    Article  CAS  Google Scholar 

  • Cygan P, Laghari J (1990) A review of electrical and thermal multistress aging models. IEEE international symposium on electrical insulation, IEEE

  • da Silva JR, Bastos JP (2017) Online evaluation of power transformer temperatures using magnetic and thermodynamics numerical modeling. IEEE Trans Magn 53(6):1–4

    Google Scholar 

  • Eeckhoudt S, Autru S, Lerat L (2017) Stray gassing of transformer insulating oils: impact of materials, oxygen content, additives, incubation time and temperature, and its relationship to oxidation stability. IEEE Electr Insul Mag 33(6):27–32

    Article  Google Scholar 

  • Ekenstam A (1936) The behavior of cellulose in mineral acid solution: kinetic study of the decomposition of cellulose in acid solutions. Ber Deutschen Chem Geselllschaft 69:553

    Article  Google Scholar 

  • Emsley A, Stevens G (1994) Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IEE Proc-Sci Measurement Technol 141(5):324–334

    Article  Google Scholar 

  • Emsley A, Xiao X, Heywood R, Ali M (2000) Degradation of cellulosic insulation in power transformers part 3: effects of oxygen and water on ageing in oil. IEE Proc-Sci Measurement Technol 147(3):115–119

    Article  CAS  Google Scholar 

  • Fu W, McCalley JD, Vittal V (2001) Risk assessment for transformer loading. IEEE Trans Power Syst 16(3):346–353

    Article  Google Scholar 

  • Gilbert R, Jalbert J, Tétreault P, Morin B, Denos Y (2009) Kinetics of the production of chain-end groups and methanol from the depolymerization of cellulose during the ageing of paper/oil systems part 1: standard wood kraft insulation. Cellulose 16(2):327–338

    Article  CAS  Google Scholar 

  • Gilbert R, Jalbert J, Duchesne S, Tétreault P, Morin B, Denos Y (2010) Kinetics of the production of chain-end groups and methanol from the depolymerization of cellulose during the ageing of paper/oil systems. part 2: thermally-upgraded insulating papers. Cellulose 17(2):253–269

    Article  CAS  Google Scholar 

  • IEC (2012) Specification for unused mineral insulating oils for transformers and switchgears. IEC, Geneva

    Google Scholar 

  • IEC (2018) Power transformers- part 7: loading guide for oil-immersed power transformers. IEC 60076–7:2018

    Google Scholar 

  • IEEE (2011) IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators. IEEE Std C57:91–2011

    Google Scholar 

  • IEEE (2016) IEEE standard for general requirements for liquid-immersed distribution power and regulating transformers. IEEE Std. C57(12):00–2015

    Google Scholar 

  • Jalbert J, Gilbert R, Tétreault P, Morin B, Lessard-Déziel D (2007) Identification of a chemical indicator of the rupture of 1, 4-β-glycosidic bonds of cellulose in an oil-impregnated insulating paper system. Cellulose 14(4):295–309

    Article  CAS  Google Scholar 

  • Jalbert J, Gilbert R, Denos Y, Gervais P (2012) Methanol: a novel approach to power transformer asset management. IEEE Trans Power Deliv 27(2):514–520

    Article  CAS  Google Scholar 

  • Jalbert J, Rodriguez-Celis EM, Duchesne S, Morin B, Ryadi M, Gilbert R (2015) Kinetics of the production of chain-end groups and methanol from the depolymerization of cellulose during the ageing of paper/oil systems part 3: extension of the study under temperature conditions over 120 C. Cellulose 22(1):829–848

    Article  CAS  Google Scholar 

  • Jalbert J, Rajotte C, Lessard MC, Rodriguez-Celis EM (2018) Methanol in oil interpretation model based on transformer post-mortem paper analysis. IEEE Trans Dielectr Electr Insul 25(2):568–573

    Article  CAS  Google Scholar 

  • Jalbert J, Rodriguez-Celis EM, Arroyo-Fernández OH, Duchesne S, Morin B (2019) Methanol marker for the detection of insulating paper degradation in transformer insulating oil. Energies 12(20):3969

    Article  CAS  Google Scholar 

  • Jardini J, Tahan C, Ahn S, Ferrari E (1997) Distribution transformer loading evaluation based on load profiles measurements. IEEE Trans Power Deliv 12(4):1766–1770

    Article  Google Scholar 

  • Jardini J, Schmidt HP, Tahan CM, De Oliveira CC, Ahn S (2000) Distribution transformer loss of life evaluation: a novel approach based on daily load profiles. IEEE Trans Power Deliv 15(1):361–366

    Article  Google Scholar 

  • Jauregui-Rivera L, Mao X, Tylavsky DJ (2008) Improving reliability assessment of transformer thermal top-oil model parameters estimated from measured data. IEEE Trans Power Deliv 24(1):169–176

    Article  Google Scholar 

  • Lee CY, Chang HC, Liu CC (2007) Emergency dispatch strategy considering remaining lives of transformers. IEEE Trans Power Syst 22(4):2066–2073

    Article  Google Scholar 

  • Lelekakis N, Martin D, Wijaya J (2012a) Ageing rate of paper insulation used in power transformers part 1: oil/paper system with low oxygen concentration. IEEE Trans Dielectr Electr Insul 19(6):1999–2008

    Article  CAS  Google Scholar 

  • Lelekakis N, Martin D, Wijaya J (2012b) Ageing rate of paper insulation used in power transformers part 2: oil/paper system with medium and high oxygen concentration. IEEE Trans Dielectr Electr Insul 19(6):2009–2018

    Article  CAS  Google Scholar 

  • Linhjell D, Gafvert U, Lundgaard L (2004) Dielectric response of oil-impregnated paper insulation: variation with humidity and ageing level (power transformer applications). The 17th annual meeting of the IEEE lasers and electro-optics society, 2004. LEOS 2004., IEEE.

  • Liu J, Fan X, Zheng H, Zhang Y, Zhang C, Lai B, Wang J, Ren G, Zhang E (2019) Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method. Cellulose 26(6):3891–3908

    Article  CAS  Google Scholar 

  • Lundgaard L, Hansen W, Linhjell D, Painter TJ (2004) Aging of oil-impregnated paper in power transformers. IEEE Trans Power Delivery 19(1):230–239

    Article  CAS  Google Scholar 

  • Lundgaard L, Hansen W, Ingebrigtsen S, Linhjell D, Dahlund M (2005) Aging of kraft paper by acid catalyzed hydrolysis. IEEE international conference on dielectric liquids, 2005. ICDL 2005., IEEE.

  • McNutt WJ (1992) Insulation thermal life considerations for transformer loading guides. IEEE Trans Power Deliv 7(1):392–401

    Article  Google Scholar 

  • Mharakurwa ET, Nyakoe GN, Akumu A (2018) Thermal modeling of power transformers with unbalanced loading. 2018 IEEE PES/IAS PowerAfrica, IEEE.

  • Mikha-Beyranvand M, Faiz J, Rezaeealam B, Rezaei-Zare A, Jafarboland M (2019) Thermal analysis of power transformers under unbalanced supply voltage. IET Electr Power Appl 13(4):503–512

    Article  Google Scholar 

  • Rodriguez-Celis E, Duchesne S, Jalbert J, Ryadi M (2015) Understanding ethanol versus methanol formation from insulating paper in power transformers. Cellulose 22(5):3225–3236

    Article  CAS  Google Scholar 

  • Ryadi M, Tanguy A (2018) Field validated dynamic thermal model for power transformer insulation system assessment. 2018 IEEE electrical insulation conference (EIC), IEEE.

  • Saha TK (2003) Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Trans Dielectr Electr Insul 10(5):903–917

    Article  CAS  Google Scholar 

  • Stahlhut JW, Heydt GT, Selover NJ (2008) A preliminary assessment of the impact of ambient temperature rise on distribution transformer loss of life. IEEE Trans Power Deliv 23(4):2000–2007

    Article  Google Scholar 

  • Susa D, Lehtonen M, Nordman H (2005) Dynamic thermal modelling of power transformers. IEEE Trans Power Deliv 20(1):197–204

    Article  Google Scholar 

  • Susa D, Brede KL, Lundgaard L (2011) On-line assessment of power transformer ageing accelerators. 2011 IEEE international conference on dielectric liquids, IEEE.

  • Swift G, Zocholl E, Bajpai M, Burger J, Castro C, Chano S, Cobelo F, De Sa P, Fennell E, Gilbert J (2001) Adaptive transformer thermal overload protection. IEEE Trans Power Deliv 16(4):516–521

    Article  Google Scholar 

  • Tenbohlen S, Schmidt N, Breuer C, Khandan S, Lebreton R (2017) Investigation of thermal behavior of an oil-directed cooled transformer winding. IEEE Trans Power Deliv 33(3):1091–1098

    Article  Google Scholar 

  • Teymouri A, Vahidi B (2017) CO2/CO concentration ratio: a complementary method for determining the degree of polymerization of power transformer paper insulation. IEEE Electr Insul Mag 33(1):24–30

    Article  Google Scholar 

  • Teymouri A, Vahidi B (2019) Estimation of power transformer remaining life from activation energy and pre-exponential factor in the Arrhenius equation. Cellulose 26(18):9709–9720

    Article  Google Scholar 

  • Teymouri A, Vahidi B (2021) Power transformer cellulosic insulation destruction assessment using a calculated index composed of CO, CO2, 2-Furfural and Acetylene. Cellulose 28(1):489–502

    Article  CAS  Google Scholar 

  • Unsworth J, Mitchell F (1990) Degradation of electrical insulating paper monitored with high performance liquid chromatography. IEEE Trans Electr Insul 25(4):737–746

    Article  Google Scholar 

  • Vahidi B, Teymouri A (2019) Quality confirmation tests for power transformer insulation systems. Springer

    Book  Google Scholar 

  • Wang M, Vandermaar AJ, Srivastava KD (2002) Review of condition assessment of power transformers in service. IEEE Electr Insul Mag 18(6):12–25

    Article  CAS  Google Scholar 

  • Yiğit E, Uçak C (2017) Investigation of IEC thermal models of power transformers. 2017 10th international conference on electrical and electronics engineering (ELECO), IEEE.

  • Yoshida H, Ishioka Y, Suzuki T, Yanari T, Teranishi T (1987) Degradation of insulating materials of transformers. IEEE Transac Elect Insul 6:795–800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Vahidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teymouri, A., Vahidi, B. & van der Wielen, P. A novel life management model consists of chemical aging model and electrical-thermal aging model for power transformers using a new activation energy calculation method. Cellulose 29, 4455–4473 (2022). https://doi.org/10.1007/s10570-022-04545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04545-2

Keywords

Navigation