Skip to main content
Log in

Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The anti-adhesion, anti-growth and the anti-penetration of bacteria, specifically multidrug-resistant bacteria, should be taken into consideration when designing promising wound dressings for infected wounds such as diabetic foot ulcers. Wound dressings composed of natural polymeric nanofibers such as functionalized cellulose, chitosan, alginate, hyaluronic acid, dextrin and cyclodextrin with appropriate antimicrobial and skin reconstruction properties are suitable alternatives that can accelerate wound healing and remove microbial infections. For instance, to improve the release profile of antibacterial agents such as metal nanoparticles and antibiotics, water-soluble polymers like polyethylene oxide and polyvinylpyrrolidone may be incorporated into polymeric nanofiber scaffolds. This review, therefore, addresses the current status and future challenges of antibacterial activities of nanofiber scaffolds composed of some of the natural occurring polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

copyright permission (Moon et al. 2017))

Fig. 2
Fig. 3
Fig. 4
Fig. 5

source: http://www.chemspider.com)

Fig. 6

source: BioRender.com)

Similar content being viewed by others

References

  • Abas M, El Masry M, Elgharably H (2020) Collagen in diabetic wound healing. In: Bagchi D, Das A, Roy S (eds) Wound healing, tissue repair, and regeneration in diabetes, Elsevier, pp 393–401

  • Abruzzo A, Saladini B, Dalena F, Nicoletta FP, Luppi B, Bigucci F et al (2020) Dry emulsions based on alpha cyclodextrin and vegetable oils for buccal delivery of lipophilic drugs. Drug Deliv Lett 10:219–227

    CAS  Google Scholar 

  • Alavi M (2019) Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers 19:103–119

    CAS  Google Scholar 

  • Alavi M (2020) Applications of chitosan and nanochitosan in formulation of novel antibacterial and wound healing agents. In: Rai M (ed) Nanotechnology in skin, soft tissue, and bone infections. Springer International Publishing, Cham, pp 169–181

    Google Scholar 

  • Alavi M, Dehestaniathar S, Mohammadi S, Maleki A, Karimi N (2020) Antibacterial Activities of Phytofabricated ZnO and CuO NPs by Mentha pulegium Leaf/flower Mixture Extract against Antibiotic Resistant Bacteria. Adv Pharmaceut Bull.

  • Alavi M, Dehestaniathar S, Mohammadi S, Maleki A, Karimi N (2021a) Antibacterial activities of phytofabricated ZnO and CuO NPs by Mentha pulegium leaf/flower mixture extract against antibiotic resistant bacteria. Adv Pharm Bull 11:497–504. https://doi.org/10.34172/apb.2021.057

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Jabari E, Jabbari E (2021b) Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Rev Anti Infect Ther 19:35–44. https://doi.org/10.1080/14787210.2020.1810569

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N (2018) Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif Cells Nanomed Biotechnol 46:S399–S413. https://doi.org/10.1080/21691401.2018.1496923

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N (2019) Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. Int J Biol Macromol 128:893–901. https://doi.org/10.1016/j.ijbiomac.2019.01.177

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N (2020) Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. Int J Biol Macromol 152:1174–1185. https://doi.org/10.1016/j.ijbiomac.2019.10.207

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Nokhodchi A (2020a) Antimicrobial and wound treatment aspects of micro-and nanoformulations of carboxymethyl, dialdehyde, and TEMPO-Oxidized Derivatives of Cellulose: Recent Advances. Macromol Biosci 20:1900362

    CAS  Google Scholar 

  • Alavi M, Nokhodchi A (2020b) An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym 227:115349. https://doi.org/10.1016/j.carbpol.2019.115349

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Rai M (2019) Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol 103:8669–8676. https://doi.org/10.1007/s00253-019-10126-4

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Rai M (2020) Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther 18:1021–1032. https://doi.org/10.1080/14787210.2020.1782740

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Rai M (2021) Antibacterial and wound healing activities of micro/nanocarriers based on carboxymethyl and quaternized chitosan derivatives. In: Rai M, Dos Santos C(eds) Biopolymer-based nano films, Elsevier, pp 191–201

  • Alghoraibi I, Alomari S (2018) Different methods for nanofiber design and fabrication. Handbook of nanofibers. Springer, Cham, pp 1–46

    Google Scholar 

  • Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M et al (2020) Electrospinning/electrospraying coatings for metal microneedles: a design of experiments (DOE) and quality by design (QbD) approach. Eur J Pharm Biopharm 156:20–39. https://doi.org/10.1016/j.ejpb.2020.08.023

    Article  CAS  PubMed  Google Scholar 

  • Aljelehawy Q, Karimi N, Alavi M (2021) Comparison of antibacterial and cytotoxic activities of phytosynthesized ZnONPs by leaves extract of Daphne mucronata at different salt sources. Mater Technol 36:747–759. https://doi.org/10.1080/10667857.2020.1794280

    Article  CAS  Google Scholar 

  • Almuhayawi MS (2020) Propolis as a novel antibacterial agent. Saudi J Biol Sci 27:3079–3086. https://doi.org/10.1016/j.sjbs.2020.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF (2021) Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biomed Rep 1:42–51

    Google Scholar 

  • Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A et al (2020) Bio-based electrospun fibers for wound healing. J Funct Biomater 11:67

    CAS  PubMed Central  Google Scholar 

  • Aziziaram Z, Bilal I, Zhong Y, Mahmod AK, Roshandel MR (2021) Protective effects of curcumin against naproxen-induced mitochondrial dysfunction in rat kidney tissue. Cell Mol Biomed Rep 1:23–32

    Google Scholar 

  • Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, Aziz M, Akbari M, Berto F et al (2020) In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 82:106298. https://doi.org/10.1016/j.polymertesting.2019.106298

    Article  CAS  Google Scholar 

  • Bakhsheshi-Rad HR, Chen X, Ismail AF, Aziz M, Abdolahi E, Mahmoodiyan F (2019) Improved antibacterial properties of an Mg-Zn-Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polym Adv Technol 30:1333–1339

    CAS  Google Scholar 

  • Bavatharani C, Muthusankar E, Wabaidur SM, Alothman ZA, Alsheetan KM, Mana Al-Anazy M et al (2020) Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review. Synth Met 271:116609

    Google Scholar 

  • Bazmandeh AZ, Mirzaei E, Fadaie M, Shirian S, Ghasemi Y (2020) Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies. Int J Biol Macromol 162:359–373. https://doi.org/10.1016/j.ijbiomac.2020.06.181

    Article  CAS  PubMed  Google Scholar 

  • Bilal I, Xie S, Elburki MS, Aziziaram Z, Ahmed SM, Jalal Balaky ST (2021) Cytotoxic effect of diferuloylmethane, a derivative of turmeric on different human glioblastoma cell lines. Cell Mol Biomed Rep 1:14–22

    Google Scholar 

  • Bösiger P, Tegl G, Richard IMT, Le Gat L, Huber L, Stagl V et al (2018) Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydr Polym 181:551–559. https://doi.org/10.1016/j.carbpol.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  • Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F (2021) Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 122:82–100

    CAS  PubMed  Google Scholar 

  • Celebioglu A, Topuz F, Yildiz ZI, Uyar T (2019) One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym 207:471–479. https://doi.org/10.1016/j.carbpol.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  • Che Othman FE, Yusof N, González-Benito J, Fan X, Ismail AF (2020) Electrospun composites made of reduced graphene oxide and polyacrylonitrile-based activated carbon nanofibers (rGO/ACNF) for enhanced CO2 adsorption. Polymers 12:2117

    PubMed Central  Google Scholar 

  • Cho HJ, Kim YH, Park S, Kim ID (2020) Design of hollow nanofibrous structures using electrospinning: an aspect of chemical sensor applications. ChemNanoMat. 6:1014–1027

    CAS  Google Scholar 

  • Chong C, Wang Y, Fathi A, Parungao R, Maitz PK, Li Z (2019) Skin wound repair: results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes. Burns 45:1639–1648. https://doi.org/10.1016/j.burns.2019.04.014

    Article  PubMed  Google Scholar 

  • Chouhan D, Chakraborty B, Nandi SK, Mandal BB (2017) Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 48:157–174. https://doi.org/10.1016/j.actbio.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  • Cova TF, Murtinho D, Pais AACC, Valente AJM (2018) Combining cellulose and cyclodextrins: fascinating designs for materials and pharmaceutics. Front Chem 6. https://doi.org/10.3389/fchem.2018.00271

    Article  PubMed  PubMed Central  Google Scholar 

  • de Andrade Neto JB, de Farias Cabral VP, Nogueira LFB, da Silva CR, Sá LGdAV, da Silva AR et al (2021) Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb Pathog 155:104892

    Google Scholar 

  • De Silva RT, Dissanayake RK, Mantilaka MMMGPG, Wijesinghe WPSL, Kaleel SS, Premachandra TN et al (2018) Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Appl Mater Interfaces 10:33913–33922. https://doi.org/10.1021/acsami.8b11013

    Article  CAS  PubMed  Google Scholar 

  • Di Donato P, Taurisano V, Poli A, d’Ayala GG, Nicolaus B, Malinconinco M et al (2020) Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate. Carbohydr Polym 229:115427

    PubMed  Google Scholar 

  • Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H et al (2018) In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol 117:601–609. https://doi.org/10.1016/j.ijbiomac.2018.05.184

    Article  CAS  PubMed  Google Scholar 

  • El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM (2020) Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr Polym 238:116175. https://doi.org/10.1016/j.carbpol.2020.116175

    Article  CAS  PubMed  Google Scholar 

  • Eskandarinia A, Kefayat A, Gharakhloo M, Agheb M, Khodabakhshi D, Khorshidi M et al (2020) A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol 149:467–476. https://doi.org/10.1016/j.ijbiomac.2020.01.255

    Article  CAS  PubMed  Google Scholar 

  • Ezhilan M, Jbb AJ, Rayappan JBB (2021) Influence of PVA templates on the synthesis of interconnected and long-winded electrospun V2O5 nanowires–Acetone sensor. Mater Res Bull 139:111276

    CAS  Google Scholar 

  • Fuller FW (2009) The side effects of silver sulfadiazine. J Burn Care Res 30:464–470

    PubMed  Google Scholar 

  • Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 153:921–930. https://doi.org/10.1016/j.ijbiomac.2020.03.036

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Dutta S, Sarkar A, Kundu M, Sil PC (2021) Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf B 197:111404

    CAS  Google Scholar 

  • Gilbert W 1991 De Magnete Magnetcisque Corporibus, et de MagnoMagneteTellure (On the Magnet, Magnetick Bodies also, and on the Great Magnet the Earth; a new Physiology, demonstrated by many arguments & Experiments), Translated 1893 from Latin to English by Paul FleuryMottelay, Dover Publications, New York

  • Graça MFP, Miguel SP, Cabral CSD, Correia IJ (2020) Hyaluronic acid—Based wound dressings: a review. Carbohydr Polym 241:116364. https://doi.org/10.1016/j.carbpol.2020.116364

    Article  CAS  PubMed  Google Scholar 

  • Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, Jahanshahi M, Hasanpour S, Pagan E et al (2020) Hyaluronic acid (HA)-based silk fibroin/zinc oxide core-shell electrospun dressing for burn wound management. Macromol Biosci 20:1900328. https://doi.org/10.1002/mabi.201900328

    Article  CAS  Google Scholar 

  • Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34:599–610

    PubMed  PubMed Central  Google Scholar 

  • Homocianu M, Pascariu P (2020) Electrospun polymer-inorganic nanostructured materials and their applications. Polym Rev 60:493–541

    CAS  Google Scholar 

  • Hosseini H, Shahraky MK, Amani A, Landi FS (2020) Electrospinning of polyvinyl alcohol/chitosan/hyaluronic acid nanofiber containing growth hormone and its release investigations. Polym Adv Technol n/a. https://doi.org/10.1002/pat.5111.

  • Hu H, Xu F-J (2020) Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater Sci 8:2084–2101

    CAS  PubMed  Google Scholar 

  • Hu J, Song Y, Zhang C, Huang W, Chen A, He H et al (2020) Highly aligned electrospun collagen/polycaprolactone surgical sutures with sustained release of growth factors for wound regeneration. ACS Appl Bio Mater 3:965–976. https://doi.org/10.1021/acsabm.9b01000

    Article  CAS  PubMed  Google Scholar 

  • Hussein Y, El-Fakharany EM, Kamoun EA, Loutfy SA, Amin R, Taha TH et al (2020) Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: nanofibers optimization and in vitro bioevaluation. Int J Biol Macromol 164:667–676. https://doi.org/10.1016/j.ijbiomac.2020.07.126

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46:73–76. https://doi.org/10.1038/pj.2013.64

    Article  CAS  Google Scholar 

  • Jiang Y, Wang D, Li F, Li D, Huang Q (2020) Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application. Int J Biol Macromol 148:1280–1289

    CAS  PubMed  Google Scholar 

  • Kalwar K, Hu L, Li DL, Shan D (2018) AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym Adv Technol 29:394–400

    CAS  Google Scholar 

  • Kalwar K, Sun W-X, Li D-L, Zhang X-J, Shan D (2016) Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity. React Funct Polym 107:87–92. https://doi.org/10.1016/j.reactfunctpolym.2016.08.010

    Article  CAS  Google Scholar 

  • Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233. https://doi.org/10.1016/j.jare.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MQ, Kharaghani D, Sanaullah SA, Saito Y, Yamamoto T et al (2019) Fabrication of antibacterial electrospun cellulose acetate/ silver-sulfadiazine nanofibers composites for wound dressings applications. Polym Test 74:39–44. https://doi.org/10.1016/j.polymertesting.2018.12.015

    Article  CAS  Google Scholar 

  • Kwa KAA, van Haasterecht L, Elgersma A, Breederveld RS, Groot ML, van Zuijlen PPM et al (2020) Effective enzymatic debridement of burn wounds depends on the denaturation status of collagen. Wound Repair Regen 28:666–675

    PubMed  Google Scholar 

  • Lei J, Sun L, Li P, Zhu C, Lin Z, Mackey V et al (2019) The wound dressings and their applications in wound healing and management. Health Sci J 13:1–8

    CAS  Google Scholar 

  • Li Y, Chi Y-Q, Yu C-H, Xie Y, Xia M-Y, Zhang C-L et al (2020) Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohydr Polym 241:116386

    CAS  PubMed  Google Scholar 

  • Liakos IL, Holban AM, Carzino R, Lauciello S, Grumezescu AM (2017) Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials 7:84

    PubMed Central  Google Scholar 

  • Lin C-M, Chang Y-C, Cheng L-C, Liu C-H, Chang SC, Hsien T-Y et al (2020) Preparation of graphene-embedded hydroxypropyl cellulose/chitosan/polyethylene oxide nanofiber membranes as wound dressings with enhanced antibacterial properties. Cellulose 27:2651–2667. https://doi.org/10.1007/s10570-019-02940-w

    Article  CAS  Google Scholar 

  • Liu C-H, Lee G-W, Wu W-C, Wang C-C (2020) Encapsulating curcumin in ethylene diamine-β-cyclodextrin nanoparticle improves topical cornea delivery. Colloids Surf B 186:110726

    CAS  Google Scholar 

  • Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F et al (2018a) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549

    CAS  Google Scholar 

  • Liu X, Nielsen LH, Kłodzińska SN, Nielsen HM, Qu H, Christensen LP et al (2018b) Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 123:42–49

    CAS  PubMed  Google Scholar 

  • Lv J, Yin X, Zeng Q, Dong W, Liu H, Zhu L (2017) Preparation of carboxymethyl chitosan nanofibers through electrospinning the ball-milled nanopowders with poly (lactic acid) and the blood compatibility of the electrospun NCMC/PLA mats. J Polym Res 24:60

    Google Scholar 

  • Maafa IM, Al-Enizi AM, Abutaleb A, Zouli NI, Ubaidullah M, Shaikh SF et al (2021) One-pot preparation of CdO/ZnO core/shell nanofibers: an efficient photocatalyst. Alex Eng J 60:1819–1826

    Google Scholar 

  • Molnar K, Nagy ZK (2016) Corona-electrospinning: needleless method for high-throughput continuous nanofiber production. Eur Polym J 74:279–286

    CAS  Google Scholar 

  • Moon S, Gil M, Lee KJ (2017) Syringeless electrospinning toward versatile fabrication of nanofiber web. Sci Rep 7:41424. https://doi.org/10.1038/srep41424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nangrejo M, Ahmad Z, Stride E, Edirisinghe M, Colombo P (2008) Preparation of polymeric and ceramic porous capsules by a novel electrohydrodynamic process. Pharm Dev Technol 13:425–432

    CAS  PubMed  Google Scholar 

  • Nascimento ML, Araújo ES, Cordeiro ER, de Oliveira AH, de Oliveira HP (2015) A literature investigation about electrospinning and nanofibers: historical trends, current status and future challenges. Recent Pat Nanotechnol 9:76–85. https://doi.org/10.2174/187221050902150819151532

    Article  CAS  PubMed  Google Scholar 

  • Norouzi M (2018) Recent advances in brain tumor therapy: application of electrospun nanofibers. Drug Discov 23:912–919

    CAS  Google Scholar 

  • Paleo AJ, Vieira EMF, Wan K, Bondarchuk O, Cerqueira MF, Bilotti E et al (2020) Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power. Cellulose 27:9091–9104

    CAS  Google Scholar 

  • Prado AR, Yokaichiya F, Franco MKKD, Silva CMGd, Oliveira-Nascimento L, Franz-Montan M et al (2017) Complexation of oxethazaine with 2-hydroxypropyl-β-cyclodextrin: increased drug solubility, decreased cytotoxicity and analgesia at inflamed tissues. J Pharm Pharmacol 69:652–662

    CAS  PubMed  Google Scholar 

  • Praphanwittaya P, Saokham P, Jansook P, Loftsson T (2020) Aqueous solubility of kinase inhibitors: I the effect of hydrophilic polymers on their γ-cyclodextrin solubilization. J Drug Deliv Sci Technol 55:101462. https://doi.org/10.1016/j.jddst.2019.101462

    Article  CAS  Google Scholar 

  • Reddy DNK, Huang F-Y, Wang S-P, Kumar R (2020) Synergistic antioxidant and antibacterial activity of Curcumin-C3 encapsulated chitosan nanoparticles. Curr Pharm Des 26:5021–5029

    CAS  PubMed  Google Scholar 

  • Rodríguez-Zamora P, Peña-Juárez MC, Cedillo-Servín G, Paloalto-Landon A, Ortega-García I, Maaza M et al (2019) Characterization of mechanically reinforced electrospun dextrin-polyethylene oxide sub-microfiber mats. Polym Eng Sci 59:1778–1786. https://doi.org/10.1002/pen.25177

    Article  CAS  Google Scholar 

  • Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H et al (2020) Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 10:8312. https://doi.org/10.1038/s41598-020-65268-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Wang B, Li J, Jansen JA, Walboomers XF, Yang F (2019) Antibacterial effect and wound healing ability of silver nanoparticles incorporation into chitosan-based nanofibrous membranes. Mater Sci Eng C 98:1053–1063. https://doi.org/10.1016/j.msec.2019.01.073

    Article  CAS  Google Scholar 

  • Sharahi JY, Ahovan ZA, Maleki DT, Rad ZR, Rad ZR, Goudarzi M et al (2020) In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (XDR) bacteria isolated from burn wound infections. Avicenna J Phytomed 10:3

    CAS  Google Scholar 

  • Sharma PR, Zheng B, Sharma SK, Zhan C, Wang R, Bhatia SR et al (2018) High aspect ratio carboxycellulose nanofibers prepared by nitro-oxidation method and their nanopaper properties. ACS Appl Nano Mater 1:3969–3980. https://doi.org/10.1021/acsanm.8b00744

    Article  CAS  Google Scholar 

  • Shepa I, Mudra E, Pavlinak D, Antal V, Bednarcik J, Mikovic O et al (2020) Surface plasma treatment of the electrospun TiO2/PVP composite fibers in different atmospheres. Appl Surf Sci 523:146381

    CAS  Google Scholar 

  • Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141. https://doi.org/10.1016/j.ejpb.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  • Soltani S, Khanian N, Choong TSY, Rashid U (2020) Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications. New J Chem 44:9581–9606

    CAS  Google Scholar 

  • Souza SOL, Cotrim MAP, Oréfice RL, Carvalho SG, Dutra JAP, de Paula CF et al (2018) Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with β-cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical and biological evaluation. J Mater Sci Mater Med 29:67. https://doi.org/10.1007/s10856-018-6079-8

    Article  CAS  PubMed  Google Scholar 

  • Svinterikos E, Zuburtikudis I, Al-Marzouqi M (2020) Electrospun lignin-derived carbon micro-and nanofibers: a review on precursors, properties, and applications. ACS Sustain Chem Eng 8:13868–13893

    CAS  Google Scholar 

  • Tsekova PB, Spasova MG, Manolova NE, Markova ND, Rashkov IB (2017) Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C 73:206–214. https://doi.org/10.1016/j.msec.2016.12.086

    Article  CAS  Google Scholar 

  • Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE 10:e0121313–e0121313. https://doi.org/10.1371/journal.pone.0121313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan LY (2020) Bubble electrospinning and Bubble-spun Nanofibers. Recent Pat Nanotechnol 14:10–13

    PubMed  Google Scholar 

  • Wang B, Chen X, Ahmad Z, Huang J, Chang M-W (2019) Engineering on-demand magnetic core–shell composite wound dressing matrices via electrohydrodynamic micro-scale printing. [https://doi.org/10.1002/adem.201900699]. Adv Eng Mater 21: 1900699. https://doi.org/10.1002/adem.201900699.

  • Wang X, Xu P, Yao Z, Fang Q, Feng L, Guo R et al (2019b) Preparation of antimicrobial hyaluronic acid/quaternized chitosan hydrogels for the promotion of seawater-immersion wound healing. Front Bioeng Biotechnol 7:360–360. https://doi.org/10.3389/fbioe.2019.00360

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Cai J, Lin S, Li F, Tian F (2020) Controlled release of monodisperse silver nanoparticles via in situ cross-linked polyvinyl alcohol as benign and antibacterial electrospun nanofibers. Colloids Surf B 197:111370

    Google Scholar 

  • Weller CD, Team V, Sussman G (2020) First-line interactive wound dressing update: a comprehensive review of the evidence. Front Pharmacol 11:155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wychowaniec JK, Patel R, Leach J, Mathomes R, Chhabria V, Patil-Sen Y et al (2020) Aromatic stacking facilitated self-assembly of ultrashort ionic complementary peptide sequence: β-sheet nanofibers with remarkable gelation and interfacial properties. Biomacromol 21:2670–2680

    CAS  Google Scholar 

  • Xie X, Li D, Su C, Cong W, Mo X, Hou G et al (2019) Functionalized biomimetic composite nanfibrous scaffolds with antibacterial and hemostatic efficacy for facilitating wound healing. J Biomed Nanotech 15:1267–1279

    CAS  Google Scholar 

  • Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q-Q, Farha AK, Kim G, Gul K, Gan R-Y, Corke H (2020) Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci Technol 97:341–354

    CAS  Google Scholar 

  • Zaarour B, Zhu L, Jin X (2020) A review on the secondary surface morphology of electrospun nanofibers: formation mechanisms, characterizations, and applications. ChemistrySelect 5:1335–1348

    CAS  Google Scholar 

  • Zhang B, Yan X, Xu Y, Zhao H-S, Yu M, Long Y-Z (2020a) Measurement of adhesion of in situ electrospun nanofibers on different substrates by a direct pulling method. Adv Mater Sci Eng 8:593768

    Google Scholar 

  • Zhang C, Li Y, Wang P, Zhang H (2020b) Electrospinning of nanofibers: potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 19:479–502

    CAS  PubMed  Google Scholar 

  • Zhang Q, Li Y, Lin ZY, Wong KKY, Lin M, Yildirimer L et al (2017) Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov 22:1351–1366. https://doi.org/10.1016/j.drudis.2017.05.007

    Article  CAS  Google Scholar 

  • Zheng L, Li S, Luo J, Wang X (2020a) Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.593768

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Bian T, Zhang Y, Zhang Y, Li Z (2020b) Construction of ion-imprinted nanofiber chitosan films using low-temperature thermal phase separation for selective and efficiency adsorption of Gd (III). Cellulose 27:455–467

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehran Alavi or Ali Nokhodchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, M., Nokhodchi, A. Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose 29, 1331–1347 (2022). https://doi.org/10.1007/s10570-021-04412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04412-6

Keywords

Navigation