Skip to main content
Log in

Characterization of absorbency properties on tissue paper materials with and without “deco” and “micro” embossing patterns

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Water absorption is a key property in several tissue paper materials and can be a differentiating factor in terms of consumer choice. The converting modifications applied in the tissue industry can improved absorbency properties. For this purpose, the main goal of the present work is to study the influence of “deco” and “micro” embossing on water absorption capacity, Klemm capillary rise, and liquid spreading kinetics in tissue papers. An industrial never-dried bleached eucalyptus kraft pulp, a creped industrial base tissue paper, and a disintegrated fibrous suspension obtained from the same industrial paper were used to produce structures with and without “deco” and “micro” embossing patterns. The results indicate that the “micro” embossing process promoted bulky and porous structures, enhancing water absorption capacity and Klemm capillary rise properties, while the “dec” embossing pattern decreased water absorption capacity properties. The creping process also increased the water absorption capacity but decreased Klemm capillary rise properties along with the fiber mixtures. Regarding the liquid spreading kinetics, both embossing patterns decreased this property in uncreped isotropic structures, contrary to creped anisotropic structures. The eucalyptus and softwood fibers mixture improved the spreading kinetics compared to the creping process. The performance of structures with and without embossing allowed to quantify the liquid retention properties, combining ISO experimental methods and an optical system that records the liquid interaction with fibrous structures. In conclusion, this laboratory embossing method can be used as an alternative method to optimize converting operations and the final tissue paper characterization, on a laboratory scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce the above findings cannot be shared at this time as the data also forms part of an ongoing study.

References

Download references

Acknowledgments

This research was supported by Project InPaCTus—Innovative Products and Technologies from eucalyptus, Project Nº 21 874 funded by Portugal 2020 through European Regional Development Fund (ERDF) in the frame of COMPETE 2020 nº 246/AXIS II/2017. The authors are also very grateful for the support given by Fiber Materials and Environmental Technologies Research Unit (FibEnTech-UBI) on the extent of the project reference UIDB/00195/2020.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Flávia P. Morais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, F.P., Vieira, J.C., Mendes, A.O. et al. Characterization of absorbency properties on tissue paper materials with and without “deco” and “micro” embossing patterns. Cellulose 29, 541–555 (2022). https://doi.org/10.1007/s10570-021-04328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04328-1

Keywords

Navigation