Skip to main content
Log in

Green synthesis of titanium dioxide nanoparticles via bacterial cellulose (BC) produced from agricultural wastes

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) produced from Achrmobacter sp. M15, was used to reduce titanium tetra isopropoxide into titanium dioxide nanoparticles (TiO2NPs) via green process. Addition of titanium dioxide nanoparticles (TiO2NPs) was carried out via sol–gel method utilizing 3-Glycidyloxypropyltrimethoxysilane (GPTMS). Transmission electron microscopy (TEM) was used to characterize the prepared TiO2NPs and their particles size were within a range of 5–10 nm. Cellulose-based fabrics (linen, viscose, cotton and cotton/polyester blend; 50:50) finished with BC/TiO2NPs nanocomposite displayed innovative properties e.g., self-cleaning and superior antimicrobial activities were illustrated. FT-IR, thermal gravimetric analysis (TGA), mechanical properties, scanning electron microscopy (SEM) and EDX were used to characterize fabrics treated with TiO2NPs. Results showed that TiO2NPs prepared using BC had innovative properties in comparison to those of the nanoparticles prepared by sol–gel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Hequet E (2009) Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl Mater Interf 1:2141–2146

    Article  CAS  Google Scholar 

  • Abou-Zeid NY, Waly AI, Kandile NG, Rushdy AA, El-Sheikh MA, Ibrahim HM (2011) Preparation, characterization and antibacterial properties of cyanoethylchitosan/cellulose acetate polymer blended films. Carbohyd Polym 84:223–230. https://doi.org/10.1016/j.carbpol.2010.11.026

    Article  CAS  Google Scholar 

  • Ait-Touchente Z et al (2020) Ultrasonic effect on the photocatalytic degradation of rhodamine 6G (Rh6G) dye by cotton fabrics loaded with TiO2. Cellulose 27:1085–1097

    Article  CAS  Google Scholar 

  • Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G (2011) Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J Appl Polym Sci 119:1961–1969

    Article  CAS  Google Scholar 

  • Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3. doi:https://doi.org/10.3389/fsufs.2019.00007

  • Bagheri S, Shameli K, Abd Hamid SB (2013) Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem 2013:848205. https://doi.org/10.1155/2013/848205

    Article  CAS  Google Scholar 

  • Blanco Parte FG, Santoso SP, Chou C-C, Verma V, Wang H-T, Ismadji S, Cheng K-C (2020) Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 1–18

  • Bouazizi N et al (2020) Development of new composite fibers with excellent UV radiation protection. Phys E 118:113905. https://doi.org/10.1016/j.physe.2019.113905

    Article  CAS  Google Scholar 

  • Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A Chem 174:156–164. https://doi.org/10.1016/j.jphotochem.2005.03.019

    Article  CAS  Google Scholar 

  • Brandes R et al (2016) Preparation and characterization of bacterial cellulose/TiO2 hydrogel nanocomposite. J Nano Res. Trans Tech Publ, pp 73-80

  • Brandes R, Trindade ECA, Vanin DF, Vargas VMM, Carminatti CA, Al-Qureshi HA, Recouvreux DOS (2018) Spherical bacterial cellulose/TiO2 nanocomposite with potential application in contaminants removal from wastewater by photocatalysis. Fib Polym 19:1861–1868. https://doi.org/10.1007/s12221-018-7798-7

    Article  CAS  Google Scholar 

  • Brown RM Jr (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part A Polym Chem 42:487–495

    Article  CAS  Google Scholar 

  • Carmen Z, Daniela S (2012) Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In: Organic pollutants ten years after the Stockholm convention-environmental and analytical update. InTech Rijeka, Croatia, p 31

  • Chen S-Q, Lopez-Sanchez P, Wang D, Mikkelsen D, Gidley MJ (2018) Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocoll 81:87–95

    Article  CAS  Google Scholar 

  • Chowdhary P, Bharagava RN, Mishra S, Khan N (2020) Role of industries in water scarcity and its adverse effects on environment and human health. In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development: volume 1: air, water and energy resources. Springer Singapore, Singapore, pp 235–256. doi:https://doi.org/10.1007/978-981-13-5889-0_12

  • Daoud WA, Xin JH, Zhang Y-H, Qi K (2005) Surface characterization of thin titania films prepared at low temperatures. J Non-Cryst Solids 351:1486–1490

    Article  CAS  Google Scholar 

  • Dong BH, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interf 1:797–803

    Article  CAS  Google Scholar 

  • Eid BM, El-Sayed GM, Ibrahim HM, Habib NH (2019) Durable antibacterial functionality of cotton/polyester blended fabrics using antibiotic/MONPs composite. Fib Polym 20:2297–2309. https://doi.org/10.1007/s12221-019-9393-y

    Article  CAS  Google Scholar 

  • Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A (2020) Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym Rev 60:144–170

    Article  CAS  Google Scholar 

  • Farag S, Ibrahim HM, Asker MS, Amr A, El-Shafaee A (2015) Impregnation of silver nanoparticles into bacterial cellulose: green synthesis and cytotoxicity. Int J ChemTech Res 8:651–661

    CAS  Google Scholar 

  • Farag S, Asker MMS, Mahmoud MG, Ibrahim H, Amr A (2016) Comparative study for bacterial cellulose production Using Egyptian Achromobacter sp. Res J Pharm Biol Chem Sci 7:954–969

    CAS  Google Scholar 

  • Farag S, Ibrahim HM, Amr A, Asker MS, El-Shafai A (2019) Preparation and characterization of ion exchanger based on bacterial cellulose for heavy metal cation removal. Egypt J Chem 62:457–466. https://doi.org/10.21608/ejchem.2019.12622.1787

    Article  Google Scholar 

  • Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohyd Polym 157:447–467

    Article  CAS  Google Scholar 

  • Frunza L et al (2018) Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2 nanoparticles: methylene blue degradation as a test reaction. Catal Today 306:251–259

    Article  CAS  Google Scholar 

  • Ghasemi S, Bari MR, Pirsa S, Amiri S (2020) Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohyd Polym 232:115801. https://doi.org/10.1016/j.carbpol.2019.115801

    Article  CAS  Google Scholar 

  • Goncalves G, Marques PA, Pinto RJ, Trindade T, Neto CP (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites composites. Sci Technol 69:1051–1056

    CAS  Google Scholar 

  • Gupta MK, Vishwakrama AK, Srivastava G, Singh SP, Kumar P (2017) Study of Titanium nanoparticles in biological system using different techniques. J Biol Sci Med 3:27–32

    Google Scholar 

  • Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interf Sci 377:88–93. https://doi.org/10.1016/j.jcis.2012.03.075

    Article  CAS  Google Scholar 

  • Güzel M, Akpınar Ö (2019) Production and characterization of bacterial cellulose from citrus peels. Waste Biomass Valor 10:2165–2175

    Article  Google Scholar 

  • Hamad H, Bailón-García E, Morales-Torres S, Pérez-Cadenas AF, Carrasco-Marín F, Maldonado-Hódar FJ (2020) Cellulose–TiO2 composites for the removal of water pollutants. In: Bio-based materials and biotechnologies for eco-efficient construction. Elsevier, pp 329–358

  • Ibrahim NA, Amr A, Eid BM, Almetwally AA, Mourad MM (2013) Functional finishes of stretch cotton fabrics. Carbohyd Polym 98:1603–1609. https://doi.org/10.1016/j.carbpol.2013.07.047

    Article  CAS  Google Scholar 

  • Ibrahim HM, Saad MM, Aly NM (2016) Preparation of single layer nonwoven fabric treated with chitosan nanoparticles and its utilization in gas filtration. Int J ChemTech Res 9:1–16

    Google Scholar 

  • Ibrahim NA, Eid BM, El-Aziz EA, Elmaaty TMA, Ramadan SM (2017) Loading of chitosan—nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. Int J Biol Macromol 105:769–776. https://doi.org/10.1016/j.ijbiomac.2017.07.099

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim NA, Aly AA, Eid BM, Fahmy HM (2018) Green approach for multifunctionalization of cellulose-containing fabrics. Fib Polym 19:2298–2306. https://doi.org/10.1007/s12221-018-8602-4

    Article  CAS  Google Scholar 

  • Ibrahim H, El-Zairy EMR, Emam EAM, Adel E (2019a) Combined antimicrobial finishing dyeing properties of cotton, polyester fabrics and their blends with acid and disperse dyes. Egyptian J Chem 62:965–976. https://doi.org/10.21608/EJCHEM.2018.6358.1535

    Article  Google Scholar 

  • Ibrahim H, Emam EAM, Tawfik TM, El-Aref AT (2019b) Preparation of cotton gauze coated with carboxymethyl chitosan and its utilization for water filtration. J Textile Apparel Technol Manage 11

  • Ibrahim HM, Aly AA, Taha GM, El-Alfy EA (2020a) Production of antibacterial cotton fabrics via green treatment with nontoxic natural biopolymer gelatin. Egypt J Chem 63:655–696. https://doi.org/10.21608/ejchem.2019.16972.2040

    Article  Google Scholar 

  • Ibrahim HM, Reda MM, Klingner A (2020b) Preparation and characterization of green carboxymethylchitosan (CMCS)—polyvinyl alcohol (PVA) electrospun nanofibers containing gold nanoparticles (AuNPs) and its potential use as biomaterials. Int J Biol Macromol 151:821–829. https://doi.org/10.1016/j.ijbiomac.2020.02.174

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM, Zaghloul S, Hashem M, El-Shafei A (2021) A green approach to improve the antibacterial properties of cellulose based fabrics using Moringa oleifera extract in presence of silver nanoparticles. Cellulose 28:549–564. https://doi.org/10.1007/s10570-020-03518-7

    Article  CAS  Google Scholar 

  • Khalid A et al (2017) Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 7:47662–47668. https://doi.org/10.1039/c7ra06699f

    Article  CAS  Google Scholar 

  • Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579

    Article  CAS  Google Scholar 

  • Lim CS, Ryu JH, Kim D-H, Cho S-Y, Oh CW (2010) Reaction morphology and the effect of pH on the preparation of TiO 2 nanoparticles by a sol-gel method. J Ceram Process Res 11:736–741

    Google Scholar 

  • Lin S-P, Loira Calvar I, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219. https://doi.org/10.1007/s10570-013-9994-3

    Article  CAS  Google Scholar 

  • Liu L-P et al (2017) Preparation and characterization of a photocatalytic antibacterial material: Graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohyd Polym 174:1078–1086. https://doi.org/10.1016/j.carbpol.2017.07.042

    Article  CAS  Google Scholar 

  • Mohamed FA, Ibrahim HM, Reda MM (2016) Eco friendly dyeing of wool and cotton fabrics with reactive dyes (bifunctional) and its antibacterial activity. Der Pharma Chemica 8:159–167

    CAS  Google Scholar 

  • Mohamed FA, Ibrahim HM, Aly AA, El-Alfy EA (2018) Improvement of dyeability and antibacterial properties of gelatin treated cotton fabrics with synthesized reactive dye. Biosci Res 15:4403–4408

    Google Scholar 

  • Monteiro AS, Domeneguetti RR, Wong Chi Man M, Barud HS, Teixeira-Neto E, Ribeiro SJL (2019) Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties. J Sol-Gel Sci Technol 89:2–11. https://doi.org/10.1007/s10971-018-4744-5

    Article  CAS  Google Scholar 

  • Morshed MN, Al Azad S, Deb H, Shaun BB, Shen XL (2020) Titania-loaded cellulose-based functional hybrid nanomaterial for photocatalytic degradation of toxic aromatic dye in water. J Water Process Eng 33:101062

    Article  Google Scholar 

  • Mosaad RM, Samir A, Ibrahim HM (2017) Median lethal dose (LD50) and cytotoxicity of Adriamycin in female albino mice. J Appl Pharm Sci 7:77–80. https://doi.org/10.7324/JAPS.2017.70312

    Article  CAS  Google Scholar 

  • Padmanabhan NT, John H (2020) Titanium dioxide based self-cleaning smart surfaces: a short review Journal of Environmental. Chem Eng 8:104211. https://doi.org/10.1016/j.jece.2020.104211

    Article  CAS  Google Scholar 

  • Saif M, El-Molla SA, Aboul-Fotouh SMK, Ibrahim MM, Ismail LFM, Dahn DC (2014) Nanostructured Gd3+-TiO2 surfaces for self-cleaning application. J Mol Struct 1067:120–126. https://doi.org/10.1016/j.molstruc.2014.03.024

    Article  CAS  Google Scholar 

  • Sarathi P, Thilagavathi G (2009) Synthesis and characterization of titanium dioxide nano-particles and their applications to textiles for microbe resistance. J Textile Apparel Technol Manage 6

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98:1585–1598

    Article  CAS  Google Scholar 

  • Shoukat A et al (2019) Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int J Biol Macromol 129:965–971. https://doi.org/10.1016/j.ijbiomac.2019.02.032

    Article  CAS  PubMed  Google Scholar 

  • Stan MS et al (2019) Reduced graphene oxide/TiO2 nanocomposites coating of cotton fabrics with antibacterial and self-cleaning properties. J Indus Textiles 49:277–293

    Article  CAS  Google Scholar 

  • Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A Review. Biotechnol Adv 33:1547–1571

    Article  CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292. https://doi.org/10.1039/b9nr00158a

    Article  CAS  PubMed  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88:596–603

    Article  CAS  Google Scholar 

  • Ul-Islam M, Shehzad A, Khan S, Khattak W, Ullah M, Park J (2014) Antimicrobial and biocompatible properties of nanomaterials. J Nanosci Nanotechnol 14:780–791

    Article  CAS  Google Scholar 

  • Ullah MW, Ul-Islam M, Khan S, Kim Y, Jang JH, Park JK (2016) In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv 6:22424–22435

    Article  CAS  Google Scholar 

  • Ullah H, Badshah M, Mäkilä E, Salonen J, Shahbazi M-A, Santos HA, Khan T (2017) Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose 24:1445–1454

    Article  CAS  Google Scholar 

  • Vetrivel V, Rajendran K, Kalaiselvi V (2015) Synthesis and characterization of pure titanium dioxide nanoparticles by sol-gel method. Int J ChemTech Res 7:1090–1097

    Google Scholar 

  • Wu D, Long M, Zhou J, Cai W, Zhu X, Chen C, Wu Y (2009) Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coatings Technol 203:3728–3733

    Article  CAS  Google Scholar 

  • Xu F, Wang T, Chen H, Bohling J, Maurice AM, Wu L, Zhou S (2017) Preparation of photocatalytic TiO2-based self-cleaning coatings for painted surface without interlayer. Prog Org Coatings 113:15–24

    Article  CAS  Google Scholar 

  • Xu Y, Wen W, Wu J-M (2018) Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. J Hazard Mater 343:285–297

    Article  CAS  Google Scholar 

  • Yang L et al (2020) Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. J Colloid Interf Sci 562:21–28. https://doi.org/10.1016/j.jcis.2019.12.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No (5336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan M. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal participants

The authors declare that there is no animal studies or human participates involvement in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, S., Amr, A., El-Shafei, A. et al. Green synthesis of titanium dioxide nanoparticles via bacterial cellulose (BC) produced from agricultural wastes. Cellulose 28, 7619–7632 (2021). https://doi.org/10.1007/s10570-021-04011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04011-5

Keywords

Navigation