Skip to main content

Advertisement

Log in

Dual physically crosslinked nanocomposite hydrogels reinforced by poly(N-vinylpyrrolidone) grafted cellulose nanocrystal with high strength, toughness, and rapid self-recovery

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

It remains challenging to develop hydrogels with comprehensive mechanical properties including ultrahigh strength, toughness and rapid self-recovery. Herein, dual physical crosslinking strategy was used to develop novel nanocomposite hydrogels reinforced by poly(N-vinylpyrrolidone) grafted cellulose nanocrystal (CNC-g-PVP). The hydrogels were fabricated via in situ copolymerization of acrylic acid (AA) and acrylamide (AM) in presence of CNC-g-PVP and subsequent introduction of Fe3+ ions. CNC-g-PVP induced the first crosslinking through strong cooperative hydrogen bonds existing between PVP chains grafted onto CNCs and amide groups from P(AM-co-AA) chains. Fe3+ triggered the second crosslinking by forming coordination bonds with –COO groups. The cooperative hydrogen bonds enhanced the interfacial compatibility between CNC-g-PVP nanofillers and hydrogel matrix, and served as fast recoverable sacrificial bonds. As a result, the hydrogels exhibited high tensile strength (1.89–2.51 MPa), remarkable toughness (6.01–6.81 MJ/m3), rapid self-recovery (83.4–97.8% recovery of hysteresis loop within 5 min) and favourable fatigue resistance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdurrahmanoglu S, Can V, Okay O (2009) Design of high toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455

    Article  CAS  Google Scholar 

  • Appel EA, Tibbitt MW, Greer JM, Fenton OS, Kreuels K, Anderson DG, Langer R (2015) Exploiting electrostatic interactions in polymer-nanoparticle hydrogels. ACS Macro Lett 4:848–852

    Article  CAS  Google Scholar 

  • Cheng FM, Chen HX, Li HD (2020) Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. Eur Polym J 124:109448

    Article  CAS  Google Scholar 

  • Cui W, Zhang ZJ, Li H, Zhu LM, Liu H, Ran R (2015) Robust dual physically cross-linked hydrogels with unique self-reinforcing behavior and improved dye adsorption capacity. RSC Adv 5:52966–52977

    Article  CAS  Google Scholar 

  • Ding HY, Zhang XN, Zheng SY, Song YH, Wu ZL, Zheng Q (2017) Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid)hydrogels with high toughness, fast self-recovery, and dual pH responsiveness. Polymer 131:95–103

    Article  CAS  Google Scholar 

  • Gao JP, Li ZC, Wang W, Huang MZ (1998) Preparation of gelatin-N-vinylpyrrolidone graft copolymer. J Appl Polym Sci 68:1485–1492

    Article  CAS  Google Scholar 

  • Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  • Guo ZR, Gu HJ, He Y, Zhang YS, Xu WY, Zhang JL, Liu YX, Xiong LY, Chen A, Feng YJ (2020) Dual dynamic bonds enable biocompatible and tough hydrogels with fast self-recoverable, self-healable and injectable properties. Chem Eng J 388:124282

    Article  CAS  Google Scholar 

  • Hu Y, Du ZS, Deng XL, Wang T, Yang ZH, Zhou WY, Wang CY (2016a) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668

    Article  CAS  Google Scholar 

  • Hu Y, Han WF, Huang GH, Zhou WY, Yang ZH, Wang CY (2016b) Highly stretchable, mechanically strong, tough, and self-recoverable nanocomposite hydrogels by introducing strong ionic coordination interactions. Macromol Chem Phys 217:2717–2725

    Article  CAS  Google Scholar 

  • Hu DN, Cui YD, Mo KW, Wang JM, Huang Y, Miao XR, Lin JY, Chang CY (2020) Ultrahigh strength nanocomposite hydrogels designed by locking oriented tunicate cellulose nanocrystals in polymeric networks. Compos Part B Eng 197:108118

    Article  CAS  Google Scholar 

  • Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626

    Article  CAS  Google Scholar 

  • Huang WJ, Wang YX, McMullen LM, McDermott MT, Deng HB, Du YM, Chen LY, Zhang LN (2019) Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydr Polym 222:114977

    Article  CAS  Google Scholar 

  • Jing X, Mi HY, Lin YJ, Enriquez E, Peng XF, Turng LS (2018) Highly stretchable and biocompatible strain sensors based on mussel-inspired super-adhesive self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces 10:20897–20909

    Article  CAS  Google Scholar 

  • Kedzior SA, Zoppe JO, Berry RM, Cranston ED (2019) Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr Opin Solid St M 23:74–91

    Article  CAS  Google Scholar 

  • Li BG, Zhang YD, Wu C, Guo B, Luo ZY (2018) Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid). Carbohydr Polym 198:1–8

    Article  Google Scholar 

  • Li BG, Zhang YD, Han YF, Guo B, Luo ZY (2019) Tough and self-healable nanocomposite hydrogels from poly(acrylic acid) and polyacrylamide grafted cellulose nanocrystal crosslinked by coordination bonds and hydrogen bonds. Cellulose 26:6701–6711

    Article  CAS  Google Scholar 

  • Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059

    Article  CAS  Google Scholar 

  • Lin S, Yuk H, Zhang T, Parada GA, Koo H, Yu C, Zhao X (2016) Stretchable hydrogel electronics and devices. Adv Mater 28:4497–4505

    Article  CAS  Google Scholar 

  • Mo KW, Zhang TT, Yan W, Chang CY (2018) Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance. Cellulose 25:6561–6570

    Article  CAS  Google Scholar 

  • Qin ZH, Niu R, Tang CJ, Xia J, Ji F, Dong DY, Zhang HT, Zhang S, Li JJ, Yao FL (2018) A dual-crosslinked strategy to construct physical hydrogels with high strength, toughness, good mechanical recoverability, and shape-memory ability. Macromol Mater Eng 303:1700396

    Article  Google Scholar 

  • Secret E, Kelly SJ, Crannell KE, Andrew JS (2014) Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl Mater Interfaces 6:10313–10321

    Article  CAS  Google Scholar 

  • Shao CY, Wang M, Meng L, Chang HL, Wang B, Xu F, Yang J, Wan PB (2018) Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mater 30:3110–3121

    Article  CAS  Google Scholar 

  • Shibayama M, Li X, Sakai T (2019) Precision polymer network science with tetra-PEG gels—a decade history and future. Colloid Polym Sci 297:1–12

    Article  CAS  Google Scholar 

  • Song GS, Zhang L, He CC, Fang DC, Whitten PG, Wang HL (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435

    Article  CAS  Google Scholar 

  • Swamy BY, Chang JH, Ahn H, Lee W-K, Chung I (2013) Thermoresponsive N-vinyl caprolactam grafted sodium alginate hydrogel beads for the controlled release of an anticancer drug. Cellulose 20:1261–1273

    Article  CAS  Google Scholar 

  • Torres-Rendon JG, Femmer T, De Laporte L, Tigges T, Rahimi K, Gremse F, Zafarnia S, Lederle W, Ifuku S, Wessling M, Hardy JG, Walther A (2015) Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv Mater 27:2989–2995

    Article  CAS  Google Scholar 

  • Wang W, Zhang Y, Liu W (2017) Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 71:1–25

    Article  Google Scholar 

  • Wei ZJ, He J, Liang T, Oh H, Athas J, Tong Z, Wang CY, Nie ZH (2013) Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polym Chem 4:4601–4605

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Zhang XM, Xu F, Sun RC (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086

    Article  CAS  Google Scholar 

  • Yang YY, Wang X, Yang F, Shen H, Wu DC (2016) A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater 28:7178–7184

    Article  CAS  Google Scholar 

  • Zawko SA, Suri S, Truong Q, Schmidt CE (2009) Photopatterned anistropic swelling of dual-crosslinked hyaluronic acid hydrogels. Acta Biomater 5:14–22

    Article  CAS  Google Scholar 

  • Zhang TT, Zuo T, Hu DN, Chang CY (2017a) Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl Mater Interfaces 9:24230–24237

    Article  CAS  Google Scholar 

  • Zhang TT, Cheng QY, Ye DD, Chang CY (2017b) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148

    Article  CAS  Google Scholar 

  • Zhao XH (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    Article  CAS  Google Scholar 

  • Zheng SY, Ding HY, Qian J, Yin J, Wu ZL, Song YH, Zheng Q (2016) Metal-coordination complexes mediated physical hydrogels with high toughness, stick–slip tearing behavior, and good processability. Macromolecules 49:9637–9646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Science Foundation of Jiangsu Province (Grant No. BK20140967).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bengang Li or Zhenyang Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Han, Y., Zhang, Y. et al. Dual physically crosslinked nanocomposite hydrogels reinforced by poly(N-vinylpyrrolidone) grafted cellulose nanocrystal with high strength, toughness, and rapid self-recovery. Cellulose 27, 9913–9925 (2020). https://doi.org/10.1007/s10570-020-03487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03487-x

Keywords

Navigation