Skip to main content
Log in

Selective (ligno) cellulose hydrogenolysis to ethylene glycol and propyl monophenolics over Ni–W@C catalysts

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The bi-functional Ni–W@C catalysts were prepared by one-pot reduction–carbonization method and used in hydrogenolysis of cellulose as well as raw lignocellulosic biomass to chemicals. The catalytic performance for cellulose conversion showed that it was more favorable for ethylene glycol (EG) production, obtaining the highest EG yield 60.1% over the Ni–W@C700 catalyst. The Ni–W@C bimetallic catalysts are systematically characterized with BET, XRD, Raman, XPS, TEM techniques and experiments to probe the active catalytic sites of the catalysts. The effects of calcination temperature of Ni–W catalysts, reaction time, temperature and H2 pressure on cellulose hydrogenolysis were investigated in detail. The Ni particles could lead to produce more W5+ active sites, which promotes the glucose retro-aldol condensation to break the target C–C bonds. Metallic Ni catalyzed C=O hydrogenation and C–C hydrogenolysis, which could also avoid the coke formation. The EG selectivity was dependent on the synergy of WOx and Ni metal sites. In addition, this synergistic effect between the metal and WOx could promote lignin component degradation in direct conversion of untreated raw lignocellulosic biomass, obtaining the propyl monophenolics including guaiacylpropane, syringylpropane and p-n-propylphenol with a total yield of 17.3 wt% besides EG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akiya N, Savage PE (2012) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750

    Article  CAS  Google Scholar 

  • Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  CAS  PubMed  Google Scholar 

  • Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Zhu S, Cen Y, Guo J, Wang J, Fan W (2017) Effect of tungsten surface density of WO3–ZrO2 on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Adv 7:8567–8574

    Article  CAS  Google Scholar 

  • Choudhary T, Phillips C (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A Gen 397:1–12

    Article  CAS  Google Scholar 

  • Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energ Environ Sci 7:2803–2830

    Article  CAS  Google Scholar 

  • Deng J, Deng DH, Bao XH (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed Engl 54:1–6

    Article  CAS  Google Scholar 

  • El-Eskandarany MS, Mahday AA, Ahmed H, Amer A (2000) Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations. J Alloys Compd 312:315–325

    Article  CAS  Google Scholar 

  • Fabičovicová K, Lucas M, Claus P (2015) From microcrystalline cellulose to hard-and softwood-based feedstocks: their hydrogenolysis to polyols over a highly efficient ruthenium–tungsten catalyst. Green Chem 17:3075–3083

    Article  CAS  Google Scholar 

  • Fan Y, Liu H, Xia B, Zhu W, Guo K, Li J (2017) A facile and gentle method to fabricate amorphous WO3 coatings with superamphiphobic character study. Mater Lett 194:81–85

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Tamalampudi S (2009) Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 44:2–12

    Article  CAS  Google Scholar 

  • Håkansson K, Johansson H, Johansson L (1994) High-resolution core-level study of hexagonal WC (0001). Phys Rev B 49:2035

    Article  Google Scholar 

  • Harshan H, Priyanka KP, Sreedevi A, Jose A, Varghese T (2018) Structural, optical and magnetic properties of nanophase NiWO4 for potential applications. Eur Phys J B 91:287

    Article  CAS  Google Scholar 

  • Hu HC, Zhang Y, Zeng T, Zhou W, Chen L, Huang L, Ni Y (2018) Determination of cellulose derived 5-hydroxymethyl-2-furfural content in lignocellulosic biomass hydrolysate by headspace gas chromatography. Cellulose 25:3843–3851

    Article  CAS  Google Scholar 

  • Hu J, Zhang SH, Xiao R, Jiang XX, Wang YJ, Sun YH, Lu P (2019) Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour Technol 279:228–233

    Article  CAS  PubMed  Google Scholar 

  • Huang ZF, Song J, Pan L, Zhang X, Wang L, Zou JJ (2015) Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv Mater 27:5309–5327

    Article  CAS  PubMed  Google Scholar 

  • Jeong K, Lee J, Byun I, Seong M, Park J, Nam H, Lee J (2017) Pulsed laser chemical vapor deposition of a mixture of W, WO2, and WO3 from W(CO)6 at atmospheric pressure. Thin Solid Films 626:145–153

    Article  CAS  Google Scholar 

  • Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed Engl 120:8638–8641

    Article  Google Scholar 

  • Katrib A, Logie V, Saurel N, Wehrer P, Hilaire L, Maire G (1997) Surface electronic structure and isomerization reactions of alkanes on some transition metal oxides. Surf Sci 377:754–758

    Article  Google Scholar 

  • Kim H, Park H, Kim DK, SeonHwa Oh, Choi I, Kim SK (2019) Electrochemically fabricated NiW on a Cu nanowire as a highly porous non-precious-metal cathode catalyst for a proton exchange membrane water electrolyzer. ACS Sustain Chem Eng 7:5265–8273

    Google Scholar 

  • Kong X, Zheng R, Zhu Y, Ding G, Zhu Y, Li YW (2015) Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chem 17:2504–2514

    Article  CAS  Google Scholar 

  • Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ Sci 5:6383–6390

    Article  CAS  Google Scholar 

  • Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    Article  CAS  PubMed  Google Scholar 

  • Li H, Fang Z, Smith R Jr, Yang S (2016) Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog Energy Combust 55:98–194

    Article  Google Scholar 

  • Li N, Zheng Y, Wei L, Teng H, Zhou J (2017) Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:682–691

    Article  CAS  Google Scholar 

  • Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed Engl 124:3303–3307

    Article  Google Scholar 

  • Liu C, Zhang C, Sun S, Liu K, Hao S, Xu J, Zhu Y, Li Y (2015) Effect of WOx on bifunctional Pd-WOx/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol. ACS Catal 5:4612–4623

    Article  CAS  Google Scholar 

  • Liu H, Qin L, Wang X, Du C, Sun D, Meng X (2016) Hydrolytic hydro-conversion of cellulose to ethylene glycol over bimetallic CNTs-supported NiWB amorphous alloy catalyst. Catal Commun 77:47–51

    Article  CAS  Google Scholar 

  • Ma R, Hao W, Ma X, Tian Y, Li Y (2014) Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst. Angew Chem Int Ed Engl 53:7310–7315

    Article  CAS  PubMed  Google Scholar 

  • Mancheva MN, Iordanova RS, Klissurski DG, Tyuliev GT, Kunev BN (2007) Direct mechanochemical synthesis of nanocrystalline NiWO4. J Phys Chem C 111:1101–1104

    Article  CAS  Google Scholar 

  • Ooms R, Dusselier M, Geboers JA, de Beeck BO, Verhaeven R, Gobechiya E, Martens JA, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707

    Article  CAS  Google Scholar 

  • Pang J, Zheng M, Wang A, Zhang T (2011) Catalytic hydrogenation of corn stalk to ethylene glycol and 1, 2-propylene glycol. Ind Eng Chem Res 50:6601–6608

    Article  CAS  Google Scholar 

  • Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T (2016) Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem 18:342–359

    Article  CAS  Google Scholar 

  • Park YM, Chung SH, Eom HJ, Lee JS, Lee KY (2010) Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresour Technol 101:6589–6593

    Article  CAS  PubMed  Google Scholar 

  • Pârvulescu V, Coman S, Palade P, Macovei D, Teodorescu C, Filoti G, Molina R, Poncelet G, Wagner F (1999) Reducibility of ruthenium in relation with zeolite structure. Appl Surf Sci 141:164–176

    Article  Google Scholar 

  • Rahimnejad S, He JH, Chen W, Wu K, Xu GQ (2014) Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors. RSC Adv 4:62423–62429

    Article  CAS  Google Scholar 

  • Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed Engl 51:2564–2601

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol 1:79–100

    Article  CAS  Google Scholar 

  • Sezgin E, Kececi ME, Akmaz S, Koc SN (2019) Heterogeneous Cr-zeolites (USY and Beta) for the conversion of glucose and cellulose to 5-hydroxymethylfurfural (HMF). Cellulose 26:9035–9043

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass NREL/TP-510-42622 National Renewable Energy Laboratory, Golden

  • Sun J, Liu H (2011) Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts. Green Chem 13:135–142

    Article  CAS  Google Scholar 

  • Sun R, Wang T, Zheng M, Deng W, Pang J, Wang A, Wang X, Zhang T (2015) Versatile nickel–lanthanum (III) catalyst for direct conversion of cellulose to glycols. ACS Catal 5:874–883

    Article  CAS  Google Scholar 

  • Tai Z, Zhang J, Wang A, Zheng M, Zhang T (2012) Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem Commun 48:7052–7054

    Article  CAS  Google Scholar 

  • Tai Z, Zhang J, Wang A, Pang J, Zheng M, Zhang T (2013) Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and tungstic acid. Chemsuschem 6:652–658

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Zhuang S, Hong B, Cai Z, Chen Y, Huang B (2019) Synthesis of light weight, high strength biomass-derived composite aerogels with low thermal conductivities. Cellulose 26:8699–8712

    Article  CAS  Google Scholar 

  • Wachs IE, Kim T, Ross EI (2006) Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catal Today 116:162–168

    Article  CAS  Google Scholar 

  • Wang S, Chen J, Chen L (2014) Selective conversion of cellulose into ethylene glycol over metal–organic framework-derived multifunctional catalysts. Catal Lett 144:1728–1734

    Article  CAS  Google Scholar 

  • Wang H, Zhu C, Liu Q, Tan J, Wang C, Liang Z, Ma L (2019) Selective conversion of cellulose to hydroxyacetone and 1-hydroxy-2-butanone with Sn–Ni bimetallic catalysts. Chemsuschem 12:2154–2160

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang A, Pang J, Zhao X, Xu J, Lei N, Wang J, Zheng M, Yin J, Zhang T (2017) Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol. Chemsuschem 10:1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Xiao TC, Wang HT, York APE, Williams VC, Green MLH (2002) Preparation of nickel–tungsten bimetallic carbide catalysts. J Catal 209:318–330

    Article  CAS  Google Scholar 

  • Yu F, Thomas J, Smet M, Dehaen W, Sels BF (2016) Molecular design of sulfonated hyperbranched poly (arylene oxindole) s for efficient cellulose conversion to levulinic acid. Green Chem 18:1694–1705

    Article  CAS  Google Scholar 

  • Zhai Q, Li F, Wang F, Xu J, Jiang J, Cai Z (2018) Liquefaction of poplar biomass for value-added platform chemicals. Cellulose 25:4663–4675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Key R&D Program of China (2018YFB1501402), the National Natural Science Foundation of China (51596220, 51536009), the DNL Cooperation Fund, CAS (DNL180302), the Natural Science Foundation of Guangdong Province (2017A030308010), the Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of the Chinese Academy of Science (No. XDA21060102) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiying Liu or Longlong Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hu, X., Liu, S. et al. Selective (ligno) cellulose hydrogenolysis to ethylene glycol and propyl monophenolics over Ni–W@C catalysts. Cellulose 27, 7591–7605 (2020). https://doi.org/10.1007/s10570-020-03340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03340-1

Keywords

Navigation