Skip to main content
Log in

A slippery oil-repellent hydrogel coating

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Development of oil-repellent coatings that are anti-fouling with water alone is highly desirable, yet still challenging. Herein, to address this challenge, we fabricate a slippery oil-repellent hydrogel coating that exhibits oil repellency when exposed in the air as well as underwater. In the air, water wets the slippery oil-repellent hydrogel coating surface completely, while organic liquid drops such as toluene can slide off the water wetted coating surface easily. When immersed in water, the slippery oil-repellent hydrogel coating surface exhibits excellent underwater superoleophobic property with all oil contact angles more than 159° and oil adhesive forces less than 1 μN. The hydrogel coating keeps its oil repellency after long-term outdoor storage, thermal treatment, knife scratching and other treatments. Exploiting its water-attracting and oil-repelling property, the slippery oil-repellent hydrogel coated copper mesh and filter paper are demonstrated as reusable membranes to separate oil–water mixtures with separation efficiency more than 97%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cai Y, Lu Q, Guo X, Wang S, Qiao J, Jiang L (2015) Salt-tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (Saccharina japonica). Adv Mater 27(28):4162–4168

    CAS  PubMed  Google Scholar 

  • Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2(244):2011. https://doi.org/10.1038/ncomms1251

    Article  CAS  Google Scholar 

  • Dai X, Stogin BB, Yang S, Wong TS (2015) Slippery Wenzel state. ACS Nano 9(9):9260–9267

    CAS  PubMed  Google Scholar 

  • Dong Z, Schumann MF, Hokkanen MJ, Chang B, Welle A, Zhou Q et al (2018) Superoleophobicity: superoleophobic slippery lubricant-infused surfaces: combining two extremes in the same surface. Adv Mater 30(45):1870338

    Google Scholar 

  • Duan J, Dong X, Yin K, Yang S, Chu D (2018) A hierarchical superaerophilic cone: Robust spontaneous and directional transport of gas bubbles. Appl Phys Lett 113:203704

    Google Scholar 

  • Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078

    CAS  Google Scholar 

  • Gao S, Sun J, Liu P, Zhang F, Zhang W, Yuan S et al (2016) A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property. Adv Mater 28(26):5307–5314

    CAS  PubMed  Google Scholar 

  • Gao S, Zhu Y, Wang J, Zhang F, Li J, Jin J (2018) Layer-by-layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high-efficient crude-oil-in-water emulsion separation. Adv Funct Mater 28(49):1801944

    Google Scholar 

  • Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA (2011) Superhydrophobic–superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays. Angew Chem Int Ed 50(36):8424–8427

    CAS  Google Scholar 

  • Guo T, Heng L, Wang M, Wang J, Jiang L (2016) Robust underwater oil-repellent material inspired by columnar nacre. Adv Mater 28(38):8505–8510

    CAS  PubMed  Google Scholar 

  • He K, Duan H, Chen GY, Liu X, Yang W, Wang D (2015) Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil–water separation membranes. ACS Nano 9(9):9188–9198

    CAS  PubMed  Google Scholar 

  • Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil–water separation. Nat Commun 3:1025

    PubMed  Google Scholar 

  • Li Y, Zheng X, Yan Z, Tian D, Ma J, Zhang X et al (2017) Closed pore structured NiCo2O4-coated nickel foams for stable and effective oil/water separation. ACS Appl Mater Interfaces 9(34):29177–29184

    CAS  PubMed  Google Scholar 

  • Li J, Ueda E, Paulssen D, Levkin PA (2019) Slippery lubricant-infused surfaces: properties and emerging applications. Adv Funct Mater 29(4):1802317

    Google Scholar 

  • Liu TL, Kim CJC (2014) Turning a surface superrepellent even to completely wetting liquids. Science 346(6213):1096

    CAS  PubMed  Google Scholar 

  • Liu X, Zhou J, Xue Z, Gao J, Meng J, Wang S et al (2012) Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv Mater 24(25):3401–3405

    CAS  PubMed  Google Scholar 

  • Liu J, Wang L, Wang N, Guo F, Hou L, Chen Y et al (2017) A robust Cu(OH)2 nanoneedles mesh with tunable wettability for nonaqueous multiphase liquid separation. Small 13(4):1600499

    Google Scholar 

  • Ma Q, Cheng H, Fane AG, Wang R, Zhang H (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12(16):2186–2202

    CAS  PubMed  Google Scholar 

  • Matsubayashi T, Tenjimbayashi M, Komine M, Manabe K, Shiratori S (2017) Bioinspired hydrogel-coated mesh with superhydrophilicity and underwater superoleophobicity for efficient and ultrafast oil/water separation in harsh environments. Ind Eng Chem Res 56(24):7080–7085

    CAS  Google Scholar 

  • Pan S, Guo R, Björnmalm M, Richardson JJ, Li L, Peng C et al (2018) Coatings super-repellent to ultralow surface tension liquids. Nat Mater 17(11):1040–1047

    CAS  PubMed  Google Scholar 

  • Pastine SJ, Okawa D, Kessler B, Rolandi M, Llorente M, Zettl A et al (2008) A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J Am Chem Soc 130(13):4238–4239

    CAS  PubMed  Google Scholar 

  • Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38(1):71–99

    Google Scholar 

  • Ramiasa M, Ralston J, Fetzer R, Sedev R (2011) Contact line friction in liquid–liquid displacement on hydrophobic surfaces. J Phys Chem C 115(50):24975–24986

    CAS  Google Scholar 

  • Ren G, Song Y, Li X, Zhou Y, Zhang Z, Zhu X (2018) A superhydrophobic copper mesh as an advanced platform for oil–water separation. Appl Surf Sci 428:520–525

    CAS  Google Scholar 

  • Tian D, Zhang X, Wang X, Zhai J, Jiang L (2011) Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil. Phys Chem Phys 13:14606–14610

    CAS  Google Scholar 

  • Tian X, Verho T, Ras RHA (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352(6282):142

    CAS  PubMed  Google Scholar 

  • Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC et al (2007) Designing superoleophobic surfaces. Science 318(5856):1618

    CAS  PubMed  Google Scholar 

  • Wang XQ, Gu CD, Wang LY, Zhang JL, Tu JP (2018) Ionic liquids-infused slippery surfaces for condensation and hot water repellency. Chem Eng J 343:561–571

    CAS  Google Scholar 

  • Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A et al (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–477

    CAS  PubMed  Google Scholar 

  • Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L et al (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23(37):4270–4273

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhou X (2012) Superhydrophilic–superoleophobic coatings. J Mater Chem 22(7):2834–2837

    CAS  Google Scholar 

  • Yang J, Song HJ, Ji H, Chen B (2014) Slippery lubricant-infused textured aluminum surfaces. J Adhes Sci Technol 28:1949–1957

    CAS  Google Scholar 

  • Yang R, Moni P, Gleason KK (2015) Ultrathin zwitterionic coatings for roughness-independent underwater superoleophobicity and gravity-driven oil–water separation. Adv Mater Interfaces 2(2):1400489

    Google Scholar 

  • Yang HC, Xie Y, Chan H, Narayanan B, Chen L, Waldman RZ et al (2018a) Crude-oil-repellent membranes by atomic layer deposition: oxide interface engineering. ACS Nano 12(8):678–8685

    Google Scholar 

  • Yang J, Xia Y, Xu P, Chen B (2018b) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25(6):3533–3544

    CAS  Google Scholar 

  • Yang S, Yin K, Wu J, Wu Z, Chu D, He J et al (2019) Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. Nanoscale 11:17607–17614

    CAS  PubMed  Google Scholar 

  • Yin K, Chu D, Dong X, Wang C, Duan J, He J (2017a) Femtosecond laser induced robust periodic nanoripples structured mesh for highly efficient oil–water separation. Nanoscale 9:14229–14235

    CAS  PubMed  Google Scholar 

  • Yin K, Du H, Dong X, Wang C, Duan J, He J (2017b) A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale 9:14620–14626

    CAS  PubMed  Google Scholar 

  • Yin K, Yang S, Dong X, Chu D, Duan J, He J (2018) Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles. Appl Phys Lett 112:243701

    Google Scholar 

  • Yong J, Chen F, Qing Y, Bian H, Du G, Shan C et al (2016) Oil–water separation: a gift from the desert. Adv Mater Interfaces 3:1500650

    Google Scholar 

  • Zhang J, Gu C, Tu J (2017) Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Appl Mater Interfaces 9(12):11247–11257

    CAS  PubMed  Google Scholar 

  • Zhang S, Jiang G, Gao S, Jin H, Zhu Y, Zhang F et al (2018) Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation. ACS Nano 12(1):795–803

    CAS  PubMed  Google Scholar 

  • Zhu X, Zhang Z, Xu X, Men X, Yang J, Zhou X et al (2012) Facile fabrication of a superamphiphobic surface on the copper substrate. J Colloid Interface Sci 367(1):443–449

    CAS  PubMed  Google Scholar 

  • Zhu X, Lu J, Li X, Wang B, Song Y, Miao X et al (2019) Simple way to a slippery lubricant impregnated coating with ultrastability and self-replenishment property. Ind Eng Chem Res 58:8148–8153

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant Numbers 11704321, 51871191), the Natural Science Foundation of Shandong Province (ZR2016JL020, ZR2019MEM044), Shandong education department (2019KJA007), and the Yantai Science and Technology Plan Projects (2019XDHZ087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotao Zhu or Guina Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 5697 kb)

Supplementary file2 (AVI 3543 kb)

Supplementary file3 (AVI 4176 kb)

Supplementary file4 (AVI 5081 kb)

Supplementary file5 (AVI 6206 kb)

Supplementary file6 (AVI 10532 kb)

Supplementary file7 (AVI 1530 kb)

Supplementary file8 (AVI 3219 kb)

Supplementary file9 (DOCX 1649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhu, X., Wang, B. et al. A slippery oil-repellent hydrogel coating. Cellulose 27, 2817–2827 (2020). https://doi.org/10.1007/s10570-019-02953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02953-5

Keywords

Navigation