Skip to main content

Advertisement

Log in

Extraction of cellulose nanocrystals using a recyclable deep eutectic solvent

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) have been widely used as renewable materials and tough nano-composites due to its excellent properties. Currently, the preparation methods of CNCs require substantial energy and time consumption and the use of toxic chemicals. Herein, cotton and other biomass feedstocks were treated with deep eutectic solvents (DESs) and subsequent high-pressure homogenization (HPH), which was a simple preparation procedure for CNCs. The morphological, spectroscopic, and stability properties of the as-prepared rod-shaped CNCs were characterized using zeta potential, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, fourier transform infrared spectroscopy and thermogravimetric techniques. CNCs with a diameter range of 50–100 nm and a length range of 500–800 nm were successfully assembled. The resulting CNC suspension was stable even after one month of storage. The solvent could be recycled successfully and reused for at least three additional pretreatment cycles while maintaining its pretreatment capability. The use of a DES as both the catalyst and solvent introduces a green chemical process that does not produce any hazardous waste and is an economical process because of the high recyclability (> 85%). The molecular structure changes of cellulose after HPH and DES treatment were also discussed. This is the first report on the recycling and reuse of a DES after preparing CNCs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Halim ES (2012) An effective redox system for bleaching cotton cellulose. Carbohyd Polym 90:316–321

    CAS  Google Scholar 

  • Alomayri T, Low IM (2018) Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. J Asian Ceram Soc 1:30–34

    Google Scholar 

  • Bafti B, Khabazzadeh H (2014) Dimethylurea/citric acid as a highly efficient deep eutectic solvent for the multi-component reactions. J Chem Sci 126:881–887

    CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983

    CAS  Google Scholar 

  • Chen Z, Wan C (2018) Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour Technol 250:532–537

    CAS  PubMed  Google Scholar 

  • Crawford DE, Wright LA, James SL, Abbott AP (2016) Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion. Chem Commun 52:4215–4218

    CAS  Google Scholar 

  • De Morais TE, Corrêa AC, Manzoli A, de Lima LF, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606

    Google Scholar 

  • Hammond OS, Bowron DT, Edler KJ (2017a) The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem Int Ed 56:9782–9785

    CAS  Google Scholar 

  • Hammond OS, Edler KJ, Bowron DT, Torrente-Murciano L (2017b) Deep eutectic-solvothermal synthesis of nanostructured ceria. Nat Commun 8:14150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Li A, Lin K, Wang Y, Kuang Z, Cao S (2018) Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour Technol 249:261–267

    CAS  PubMed  Google Scholar 

  • Kose O, Tran A, Lewis L, Hamad WY, MacLachlan MJ (2019) Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun 10(1):510

    PubMed  PubMed Central  Google Scholar 

  • Laitinen O, Ojala J, Sirviö JA, Liimatainen H (2017a) Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 24:1679–1689

    CAS  Google Scholar 

  • Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017b) Hydrophobic superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Inter 9:25029–25037

    CAS  Google Scholar 

  • Lee M, Heo MH, Lee H, Lee H, Jeong H, Kim Y, Shin J (2018) Facile and eco-friendly extraction of cellulose nanocrystalsvia electron beam irradiation followed by high-pressure homogenization. Green Chem 20:2596–2610

    CAS  Google Scholar 

  • Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    CAS  PubMed  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohyd Polym 90:1609–1613

    CAS  Google Scholar 

  • Li J, Wang Y, Wei X, Wang F, Han D, Wang Q, Kong L (2014) Homogeneous isolation of nanocelluloses by controlling the shearing force and pressure in microenvironment. Carbohyd Polym 113:388–393

    CAS  Google Scholar 

  • Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:869–1160

    Google Scholar 

  • Li D, Henschen J, Ek M (2017) Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem 19:5564–5567

    CAS  Google Scholar 

  • Ling Z, Edwards J, Guo Z, Prevost N, Nam S, Wu Q, French A, Xu F (2019) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26:861–876

    CAS  Google Scholar 

  • Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631

    CAS  Google Scholar 

  • Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619

    CAS  Google Scholar 

  • Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172

    CAS  Google Scholar 

  • Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour Technol 238:684–689

    CAS  PubMed  Google Scholar 

  • Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega 4:8539–8547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793

    CAS  Google Scholar 

  • Morais JPS, Rosa MDF, de Souza FMDSM, Nascimento LD, Do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91:229–235

    CAS  Google Scholar 

  • Niu F, Li M, Huang Q, Zhang X, Pan W, Yang J, Li J (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohyd Polym 165:197–204

    CAS  Google Scholar 

  • Park JH, Oh KW, Choi H (2013) Preparation and characterization of cotton fabrics with antibacterial properties treated by crosslinkable benzophenone derivative in choline chloride-based deep eutectic solvents. Cellulose 20:2101–2114

    CAS  Google Scholar 

  • Procentese A, Raganati F, Olivieri G, Russo ME, Rehmann L, Marzocchella A (2018) Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol Biofuels 11(1):37

    PubMed  PubMed Central  Google Scholar 

  • Shakeri A, Radmanesh S (2013) Preparation of cellulose nanofibrils by high-pressure homogenizer and zein composite films. Adv Mater Res 829:534–538

    Google Scholar 

  • Sirviö JA, Honkaniemi S, Visanko M, Liimatainen H (2015) Composite films of poly(vinyl alcohol) and bifunctional cross-linking cellulose nanocrystals. ACS Appl Mater Inter 7:19691–19699

    Google Scholar 

  • Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17:3025–3032

    PubMed  Google Scholar 

  • Sirviö JA, Visanko M, Ukkola J, Liimatainen H (2018) Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Ind Crop Prod 122:513–521

    Google Scholar 

  • Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    CAS  PubMed  Google Scholar 

  • Tenhunen T, Lewandowska A, Orelma H, Johansson L,  Virtanen T,  Harlin A, Österberg M, Eichhorn S, Tammelin T (2018) Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose 25:137–150

    CAS  Google Scholar 

  • Wang Y, Wei X, Li J, Wang F, Wang Q, Chen J, Kong L (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fiber Polym 16:572–578

    Google Scholar 

  • Wang Y, Wei X, Li J, Wang F, Wang Q, Zhang Y, Kong L (2017) Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Ind Crop Prod 104:237–241

    CAS  Google Scholar 

  • Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204

    Google Scholar 

  • Xu G, Ding J, Han R, Dong J, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369

    CAS  PubMed  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938

    CAS  Google Scholar 

  • Zhang R, Liu Y (2018) High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood. Sci Rep 8(1):16505

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Benoit M, De Oliveira VK, Barrault J, Jérôme F (2012a) Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem Eur J 18:1043–1046

    CAS  PubMed  Google Scholar 

  • Zhang Q, De Oliveira VK, Royer S, Jérôme F (2012b) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:718–7146

    Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohyd Polym 76:51–59

    CAS  Google Scholar 

  • Zuo M, Le K, Li Z, Jiang Y, Zeng X, Tang X, Sun Y, Lin L (2017) Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Ind Crop Prod 99:1–6

    CAS  Google Scholar 

  • Zuo M, Le K, Feng Y, Xiong C, Zeng X, Tang X, Sun Y, Lin L (2018) An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Ind Crop Prod 112:18–23

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 21676223, 21978248), the special fund for Fujian Ocean High-Tech Industry Development (No. FJHJF-L-2018–1), China, and the Energy development Foundation of the College of Energy, Xiamen University (No. 2017NYFZ02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhai Zeng or Lu Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, J., Zeng, X. et al. Extraction of cellulose nanocrystals using a recyclable deep eutectic solvent. Cellulose 27, 1301–1314 (2020). https://doi.org/10.1007/s10570-019-02867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02867-2

Keywords

Navigation