Skip to main content
Log in

Isolation and characterization of cellulosic fibers from ramie using organosolv degumming process

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Degumming bast fibers by organic solvents has been a promising method in recent years due to easy recovery and reuse of organic solvents. In this research, the possibility of ramie fiber degumming by glycol and a combination of acetic acid with glycol was studied, in which two steps were involved in the degumming process: distilled water boiling pretreatment and organosolv treatment by a combination of glycol/acetic acid (100/0, 90/10, 80/20, 70/30, 60/40, 50/50). Results displayed that the pretreatment could remove 6.99% of hemicellulose, 0.59% of lignin and 36.26% of other gums compared with raw ramie. While with organosolv treatment (130 °C, 6 h), fibers treated by glycol/acetic acid (50/50) had the best effect of removing gums. The hemicellulose and lignin content of fibers reduced by 44.81% and 54.12%, respectively (compared with raw ramie), while the residual gum content still failed to meet the requirements of spinning process. Besides, the tenacity of glycol/acetic acid treated fibers was lower than that of only glycol treated fibers (4.67 cN/dtex). Considering that the addition of acid could cause a decrease in fiber tenacity, the step of organosolv (only glycol) treatment was optimized by altering the degumming condition. The tenacity, linear density, non-cellulosic component ratio of fibers treated with the optimized condition (200 °C, 80 min) were 6.53 cN/dtex, 6.06 dtex, 5.78%, respectively, which met the needs of industrial production. Compared with the organosolv treated fibers, these properties of fibers with traditional alkaline treatment were better, but the yield (62.4%) was much lower than that of fibers treated with glycol in two degumming condition (77–82%). Considering impressive properties of the treated ramie, the method of organosolv degumming with high degumming efficiency and environmental protection would bring an innovative thought for natural fiber isolation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amiralian N, Annamalai PK, Memmott P, Martin DJ (2015) Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498

    Article  Google Scholar 

  • Aslan M, Sørensen BF, Bo M (2011) Strength variability of single flax fibres. J Mater Sci 46:6344–6354

    Article  CAS  Google Scholar 

  • Balaji AN, Nagarajan KJ (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200

    Article  CAS  Google Scholar 

  • Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011) Solvent fractionation of renewable woody feedstocks: organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35:4197–4208

    Article  CAS  Google Scholar 

  • Carvalho DMD, Queiroz JHD, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crops Prod 94:932–941

    Article  CAS  Google Scholar 

  • Cheng F, Zhao X, Hu Y (2018) Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents. Bioresour Technol 249:969–975

    Article  CAS  PubMed  Google Scholar 

  • Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34

    Article  CAS  Google Scholar 

  • Choi HY, Lee JS (2012) Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite. Fibers Polym 13:217–223

    Article  CAS  Google Scholar 

  • Dapía S, Santos V, Parajó JC (2002) Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22:213–221

    Article  Google Scholar 

  • Dehbari N, Tavakoli J, Zhao J, Tang Y (2017) In situ formed internal water channels improving water swelling and mechanical properties of water swellable rubber composites. J Appl Polym Sci 134:44548

    Article  CAS  Google Scholar 

  • Deng L et al (2012) Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes. Bioresour Technol 107:41–45

    Article  CAS  PubMed  Google Scholar 

  • Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262

    Article  CAS  PubMed  Google Scholar 

  • El Achaby M, El Miri N, Hannache H, Gmouh S, Trabadelo V, Aboulkas A, Youcef HB (2018) Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physico-chemical properties and polymer reinforcing ability. Cellulose 25:6603–6619

    Article  CAS  Google Scholar 

  • Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28

    Article  CAS  Google Scholar 

  • Fan X-S, Liu Z-W, Liu Z-T, Lu J (2010) A novel chemical degumming process for ramie bast fiber. Text Res J 80:2046–2051

    Article  CAS  Google Scholar 

  • Fernandez EO, Young RA (1996) Properties of cellulose pulps from acidic and basic processes. Cellulose 3:21–44

    Article  CAS  Google Scholar 

  • Fernández N, Mörck R, Johnsrud SC, Kringstad KP (1990) Carbon-13 NMR study on lignin from bagasse. Holzforschung 44:35–38

    Article  Google Scholar 

  • Ferraz A, Mendonça R, da Silva FT (2000) Organosolv delignification of white-and brown-rotted Eucalyptus grandis hardwood. J Chem Technol Biotechnol 75:18–24

    Article  CAS  Google Scholar 

  • Ferrer A, Vega A, Rodrã-Guez A, Jiménez L (2013) Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresour Technol 132:115–120

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88:547–557

    Article  CAS  Google Scholar 

  • Hao J, Xu S, Xu N, Li D, Linhardt RJ, Zhang Z (2017) Impact of degree of oxidation on the physicochemical properties of microcrystalline cellulose. Carbohydr Polym 155:483–490

    Article  CAS  PubMed  Google Scholar 

  • Hubbell CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101:7410–7415

    Article  CAS  PubMed  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48

    Article  CAS  Google Scholar 

  • Jiang W et al (2018) A green degumming process of ramie. Ind Crops Prod 120:131–134

    Article  CAS  Google Scholar 

  • Kang SY, Epps HH (2009) Effect of scouring and enzyme treatment on moisture regain percentage of naturally colored cottons. J Text Inst 100:598–606

    Article  CAS  Google Scholar 

  • Kassab Z, Boujemaoui A, Youcef HB, Hajlane A, Hannache H, El Achaby M (2019) Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites. Cellulose 26:1–15

    Article  CAS  Google Scholar 

  • Keshk SMAS (2015) Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures. Carbohydr Polym 115:658–662

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yu C (2014) Effect of peroxide and softness modification on properties of ramie fiber. Fibers Polym 15:2105–2111. https://doi.org/10.1007/s12221-014-2105-8

    Article  CAS  Google Scholar 

  • Li Z et al (2016a) High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22:548–557

    Article  CAS  Google Scholar 

  • Li Z, Meng C, Zhou J, Li Z, Ding J, Liu F, Yu C (2016b) Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming. Text Res J 87:1828–1840. https://doi.org/10.1177/0040517516659380

    Article  CAS  Google Scholar 

  • Liu L, Xiang Y, Zhang R, Li B, Yu J (2017) Effect of NaClO dosage on the structure of degummed hemp fibers by 2,2,6,6-tetramethyl-1-piperidinyloxy-laccase degumming. Text Res J. https://doi.org/10.1177/0040517517736476

    Article  Google Scholar 

  • Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172

    Article  CAS  PubMed  Google Scholar 

  • McDonough TJ (1992) The chemistry of organosolv delignification. TAPPI Solvent Pulping Seminar

  • Meng C, Li Z, Wang C, Yu C (2016) Sustained-release alkali source used in the oxidation degumming of ramie. Text Res J 87:1155–1164. https://doi.org/10.1177/0040517516648512

    Article  CAS  Google Scholar 

  • Meng C, Yang J, Zhang B, Yu C (2018) Rapid and energy-saving preparation of ramie fiber in TEMPO-mediated selective oxidation system. Ind Crops Prod 126:143–150

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Dutta N, Chattopadhyay D, Chakrabarti K (2013) Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase. Bioresour Technol 137:202–208

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Przybysz P, Kucner MA, Dubowik M, Przybysz K (2017) Laboratory refining of bleached softwood kraft pulp in water and a series of alcohols of different molecular weights and polarities: effects on swelling and fiber length. BioResources 12:1737–1748

    Article  CAS  Google Scholar 

  • Rodríguez A, Jiménez L (2008) Pulping with organic solvents other than alcohols. Afinidad LXV 65:188–196

    Google Scholar 

  • Romaní A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102:5896–5904

    Article  PubMed  CAS  Google Scholar 

  • Sarkanen KV (1980) Acid-catalyzed delignification of lignocellulosics in organic solvents. Prog Biomass Convers 2:127–144

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Shen M, Wang L, Long JJ (2015) Biodegumming of ramie fiber with pectinases enhanced by oxygen plasma. J Clean Prod 101:395–403

    Article  CAS  Google Scholar 

  • Song Y, Jiang W, Zhang Y, Ben H, Han G, Ragauskas AJ (2018) Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment. Cellulose 25:4979–4992

    Article  CAS  Google Scholar 

  • Sun R, Lawther JM, Banks W (1996) Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr Polym 29:325–331

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13 C NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Xu F et al (2006) Characterisation of degraded organosolv hemicelluloses from wheat straw. Polym Degrad Stab 91:1880–1886

    Article  CAS  Google Scholar 

  • Xuebing Z, Keke C, Dehua L (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  • Yawalata D (2001) Catalytic selectivity in alcohol organosolv pulping of spruce wood. University of British Columbia, Vancouver

    Google Scholar 

  • Yeping X, Jianyong Y, Liu L, Ruiyun Z, Yongshuai Q, Miaolei J (2018) The chemo-enzymatic modification and degumming of hemp fiber by the laccase-2,2,6,6-tetramethylpiperidine-1-oxyl radical-hemicellulase system and physico-chemical properties of the products. Text Res J. https://doi.org/10.1177/0040517518792724

    Article  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41:499–505

    Article  CAS  Google Scholar 

  • Yuan J, Yu Y, Wang Q, Fan X, Chen S, Wang P (2013) Modification of ramie with 1-butyl-3-methylimidazolium chloride ionic liquid. Fibers Polym 14:1254–1260

    Article  CAS  Google Scholar 

  • Yunos NSHM et al (2016) Enhanced oil recovery and lignocellulosic quality from oil palm biomass using combined pretreatment with compressed water and steam. J Clean Prod 142:S0959652616316882

    Google Scholar 

  • Zafeiropoulos NE, Vickers PE, Baillie CA, Watts JF (2003) An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR. J Mater Sci 38:3903–3914

    Article  CAS  Google Scholar 

  • Zhang J, Zhang J (2010) Effect of refined processing on the physical and chemical properties of hemp bast fibers. Text Res J 80:744–753

    Article  CAS  Google Scholar 

  • Zhang Y et al (2018) One-step fractionation of the main components of bamboo by formic acid-based organosolv process under pressure. J Wood Chem Technol. https://doi.org/10.1080/02773813.2017.1388823

    Article  Google Scholar 

  • ZhanYing Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381

    Article  CAS  Google Scholar 

  • Zheng L, Du Y, Zhang J (2001) Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresour Technol 78:89–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the following financial support for the research and authorship of this article: This work was supported by the Fundamental Research Funds for the Central Universities (Grant Number EG2018006), the Shanghai Municipal Natural Science Foundation (Grant Number 14 ZR1401000) and the Fundamental Research Funds for the Central Universities (Grant Number CUSFDH-D-2017014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RuiYun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Yin, W., Zhang, R. et al. Isolation and characterization of cellulosic fibers from ramie using organosolv degumming process. Cellulose 27, 1225–1237 (2020). https://doi.org/10.1007/s10570-019-02835-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02835-w

Keywords

Navigation