Skip to main content
Log in

Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

It is a challenge to fabricate a flexible and smart cotton fabric sensor with improved thermal conductivity while retaining electrical insulation. Herein, reactive multiwall carbon nanotube (MWCNT) nanofluid exhibiting soft glassy rheological behavior was successfully synthesized through simultaneous surface modification by (3-aminopropyl) triethoxysilane and dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride followed by ion-exchange reaction with nonylphenol polyoxyethylene ether sodium sulfate. Then, MWCNT nanofluid was used to coat MWCNT nanofluid/cotton fabrics by simple spraying. It was found that the addition of MWCNT nanofluid improved the thermal conductivity while preserving electrical insulation of the cotton fabric. The maximum thermal conductivity of MWCNT nanofluid/cotton fabric is 2.42 times that of cotton fabric. It was also observed that surface grafted non-conductive silane molecules and organic ion salt of MWCNT hinder the MWCNT inter-contacting with each other to form a conductive network for retaining electrical insulation. In addition, during the combustion process of cotton fabric, surface grafted organic molecules of MWCNT nanofluid began to decompose and thus promote the formation of the MWCNT conductive network, indicated by the presence of electric current. This could be valuable as a low-voltage DC power source for potential applications in fire alarm sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas A, Zhao Y, Zhou J, Wang X, Lin T (2013) Improving thermal conductivity of cotton fabrics using composite coatings containing graphene, multiwall carbon nanotube or boron nitride fine particles. Fibers Polym 14:1641–1649

    Article  CAS  Google Scholar 

  • Bo Y, Zhao Y, Cai Z, Bahi A, Liu C, Ko F (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25:4079–4091

    Article  CAS  Google Scholar 

  • Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403

    Article  CAS  Google Scholar 

  • Cai G, Yang M, Pan J, Cheng D, Xia Z, Wang X, Tang B (2018) Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 10:32726–32735

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai Y-W (2011) Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon 49:495–500

    Article  CAS  Google Scholar 

  • Du FP, Yang W, Zhang F, Tang CY, Liu SP, Yin L, Law WC (2015) Enhancing the heat transfer efficiency in graphene-epoxy nanocomposites using a magnesium oxide-graphene hybrid structure. ACS Appl Mater Interfaces 7:14397–14403

    Article  CAS  PubMed  Google Scholar 

  • Du D, Li P, Ouyang J (2016) Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C 4:3224–3230

    Article  CAS  Google Scholar 

  • Hsiao MC, Ma CC, Chiang JC, Ho KK, Chou TY, Xie X, Tsai CH, Chang LH, Hsieh CK (2013) Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide-silica hybrid nanosheets. Nanoscale 5:5863–5871

    Article  CAS  PubMed  Google Scholar 

  • Jie W, Gong C, Sheng W, Hai L, Qin C, Xiong C, Dong L (2018) Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications. Carbohydr Polym 186:S0144861718300328

    Google Scholar 

  • Lei Y, Xiong C, Guo H, Yao J, Dong L, Su X (2008) Controlled viscoelastic carbon nanotube fluids. J Am Chem Soc 130:3256–3257

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu H, Hua T, Xu B, Jiang S (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11:1–13

    Article  CAS  Google Scholar 

  • Lin ZI, Lou CW, Pan YJ, Hsieh CT, Huang CH, Huang CL, Chen YS, Lin JH (2017) Conductive fabrics made of polypropylene/multi-walled carbon nanotube coated polyester yarns: mechanical properties and electromagnetic interference shielding effectiveness. Compos Sci Technol 141:74–82

    Article  CAS  Google Scholar 

  • Mohamed NA, Abd El-Ghany NA (2019) Synthesis, characterization and antimicrobial activity of novel aminosalicylhydrazide cross linked chitosan modified with multi-walled carbon nanotubes. Cellulose 26:1141–1156

    Article  CAS  Google Scholar 

  • Pan J, Yang M, Luo L, Xu A, Tang B, Cheng D, Cai G, Wang X (2019) Stretchable and highly sensitive braided composite Yarn@Polydopamine@Polypyrrole for wearable applications. ACS Appl Mater Interfaces 11:7338–7348

    Article  CAS  PubMed  Google Scholar 

  • Sang Z, Zhang W, Zhou Z, Fu H, Tan Y, Sui K, Xia Y (2017) Functionalized alginate with liquid-like behaviors and its application in wet-spinning. Carbohydr Polym 174:933–940

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang C (2013) Electrostatic assembly of core-corona silica nanoparticles onto cotton; fibers. Cellulose 20:1727–1736

    Article  CAS  Google Scholar 

  • Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116

    Article  CAS  Google Scholar 

  • Weng P, Yin X, Yang S, Han L, Tan Y, Chen N, Chen D, Zhou Y, Wang L, Wang H (2018) Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose 25:1425–1436

    Article  CAS  Google Scholar 

  • Wu Q, Gong LX, Li Y, Cao CF, Tang LC, Wu L, Zhao L, Zhang GD, Li SN, Gao J, Li Y, Mai YW (2018) Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12:416–424

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Zhang W, Wei Y, Chen L, Huang L, Boury B (2018) Correction to: carbon/ZnO nanorods composites templated by TEMPO-oxidized cellulose and photocatalytic activity for dye degradation. Cellulose 2:1821

    Article  CAS  Google Scholar 

  • Yang S, Li S, Yin X, Wang L, Chen D, Zhou Y, Wang H (2016a) Preparation and characterization of non-solvent halloysite nanotubes nanofluid. Appl Clay Sci 126:215–222

    Article  CAS  Google Scholar 

  • Yang S, Liu J, Pan F, Yin X, Wang L, Chen D, Zhou Y, Xiong C, Wang H (2016b) Fabrication of self-healing and hydrophilic coatings from liquid-like graphene@SiO2 hybrids. Compos Sci Technol 136:133–144

    Article  CAS  Google Scholar 

  • Yang S, Tan Y, Yin X, Chen S, Chen D, Wang L, Zhou Y, Xiong C (2016c) Preparation and characterization of monodisperse solvent-free silica nanofluid. J Dispers Sci Technol 38:425–431

    Article  CAS  Google Scholar 

  • Yin B, Wen Y, Hong T, Xie Z, Yuan G, Ji Q, Jia H (2017a) Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl Mater Interfaces 9:32054

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Weng P, Yang S, Han L, Du Z, Wang L, Tan Y (2017b) Preparation of viscoelastic gel-like halloysite hybrids and their application in halloysite/polystyrene composites. Polym Int 66:1372–1381

    Article  CAS  Google Scholar 

  • Yin X, Weng P, Yang S, Han L, Tan Y, Pan F, Chen D, Wang L, Qin J, Wang H (2017c) Suspended carbon black fluids reinforcing and toughening of poly(vinyl alcohol) composites. Mater Des 130:37–47

    Article  CAS  Google Scholar 

  • Yin X, Li Y, Weng P, Yu Q, Han L, Xu J, Zhou Y, Tan Y, Wang L, Wang H (2018a) Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly(lactic acid) fibers fabricated via electrospinning approach. Compos Sci Technol 167:190–198

    Article  CAS  Google Scholar 

  • Yin X, Weng P, Han L, Liu J, Tan Y, Chen D, Zhou Y, Li S, Wang L, Wang H (2018b) Enhanced wettability and moisture retention of cotton fabrics coated with self-suspended chitosan derivative. Cellulose 25:2721–2732

    Article  CAS  Google Scholar 

  • Yu Q, Li Y, Han L, Yin X, Xu J, Zhou Y, Chen D, Du Z, Wang L, Tan Y (2019) Self-suspended starch fluids for simultaneously optimized toughness, electrical conductivity, and thermal conductivity of polylactic acid composite. Compos Sci Technol 169:76–85

    Article  CAS  Google Scholar 

  • Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G, Yang X (2016) Influence of a liquid-like MWCNT reinforcement on interfacial and mechanical properties of carbon fiber filament winding composites. Polymer 90:193–203

    Article  CAS  Google Scholar 

  • Zhang C, Zhou G, Rao W, Fan L, Xu W, Xu J (2018) A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 25:4859–4870

    Article  CAS  Google Scholar 

  • Zhu L, Liu Y, Jiang Z, Sakai E, Qiu J, Zhu P (2019) Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as cross-linker. Cellulose 26:5291–5303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (51403165). Natural Science Foundation of Hubei Province (2018CFB685, 2018CFB267), Graduate Innovation Fund of Wuhan Textile University (52300200101), the Foundation of Wuhan Textile University (183004) and Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province (PLN2016-02) and Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201808), the Innovation and Entrepreneurship Program of Hubei province (201810495060). L.H. also acknowledges partial financial support by the U.S. Department of Energy, Office of Science, Basic Energy Science Material Science and Engineering Division. We sincerely thank Benjamin J. Stacy to modify the language throughout the text.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianze Yin or Xinghui Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Weng, P., Han, L. et al. Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose 26, 7523–7535 (2019). https://doi.org/10.1007/s10570-019-02592-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02592-w

Keywords

Navigation