Skip to main content
Log in

Sol–gel finishing of bamboo fabric with nanoparticles for water repellency, soil release and UV resistant characteristics

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This research work reports on the preparation of a durable hydrophobic bamboo knitted fabric with multifunctional properties using sol–gel coating method. The titania nanoparticles (TNPs) and silica nanoparticles (SNPs) composite sols were made using citric acid as cross-linking agent. The bamboo knitted fabric was functionalized by the dip-pad-dry-pad-cure method. Different ratios of TNPs and SNPs were made. All process and solution parameters of sol–gel coating method were optimized to achieve the desired fabric properties. ATR-FTIR spectroscopy, EDS and SEM analysis were carried out to characterize the untreated and sol–gel coated bamboo knitted fabrics. The hydrophobicity, soil release, UV resistance and wash-durability of bamboo knitted fabrics functionalized with NPs (nanoparticles) were measured. The results revealed that the sol–gel coating of TNPs and SNPs on bamboo fabric was durable up to five industrial washes. Moreover, air permeability and fabric handle did not change after sol–gel finishing indicating that the fabric inherent comfort remained unaffected.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NPs:

Nanoparticles

TNPs:

Titania nanoparticles

SNPs:

Silica nanoparticles

NaH2PO2 :

Sodium hypophosphite

CA:

Citric acid

DTMS:

Dodecyltrimethoxysilane

UV:

Ultraviolet

WCA:

Water contact angle

AATCC:

American Association of Textile Chemist and Colorists

ISO:

Organization for International Standardization

ASTM:

American Standards for Testing Materials

SEM:

Scanning electron microscopy

References

  • Abbas R, Khereby MA, Sadik WA, El Demerdash AGM (2015) Fabrication of durable and cost effective superhydrophobic cotton textiles via simple one step process. Cellulose 22(1):887–896

    Article  CAS  Google Scholar 

  • Abidi N, Hequet E, Tarimala S, Dai LL (2007) Cotton fabric surface modification for improved UV radiation protection using sol–gel process. J Appl Polym Sci 104(1):111–117

    Article  CAS  Google Scholar 

  • Babar AA, Wang X, Iqbal N, Yu J, Ding B (2017) Tailoring differential moisture transfer performance of nonwoven/polyacrylonitrile-SiO2 nanofiber composite membranes. ADV Mater Interfaces 4(15):1700062

    Article  CAS  Google Scholar 

  • Babar AA, Miao D, Ali N, Zhao J, Wang X, Yu J, Ding B (2018) Breathable and colorful cellulose acetate-based Nanofibrous membranes for directional moisture transport. ACS Appl Mater Interfaces 10(26):22866–22875

    Article  CAS  PubMed  Google Scholar 

  • Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, New York, p 2

    Google Scholar 

  • Chinta SK, Landage SM, Swapnal J (2013) Water repellency of textiles through nanotechnology. Int J Adv Res IT Eng 2(1):36–57

    Google Scholar 

  • Daoud WA, Xin JH, Tao X (2004) Superhydrophobic silica nanocomposite coating by a low-temperature process. J Am Ceram Soc 87(9):1782–1784

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M, Shahsavan S (2010) A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf B 81(1):32–41

    Article  CAS  Google Scholar 

  • Gashti MP, Alimohammadi F, Shamei A (2012) Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating. Surf Coat Technol 206(14):3208–3215

    Article  CAS  Google Scholar 

  • Golraa OA, Luqmanc A, Buttd NM (2011) Strategy for introducing nanotechnology in textile industry of Pakistan. Int J Chem Environ Eng 2(4):276–283

    Google Scholar 

  • Guo F, Wen Q, Peng Y, Guo Z (2017) Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties. J Colloid Interface Sci 494:54–63

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Gurney RS, Wang T, Liu D (2018) Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods. J Colloid Interface Sci 527:107–116

    Article  CAS  PubMed  Google Scholar 

  • Karimi L, Mirjalili M, Yazdanshenas ME, Nazari A (2010) Effect of nano TiO2 on self-cleaning property of cross-linking cotton fabric with succinic acid under UV irradiation. Photochem Photobiol 86(5):1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zheng H, Sun Q, Han S, Fan B, Yao Q, Jin C (2015) Fabrication of superhydrophobic bamboo timber based on an anatase TiO 2 film for acid rain protection and flame retardancy. RSC Adv. 5(76):62265–62272

    Article  CAS  Google Scholar 

  • Liu J, Huang W, Xing Y, Li R, Dai J (2011) Preparation of durable superhydrophobic surface by sol–gel method with water glass and citric acid. J Solgel Sci Technol 58(1):18–23

    Article  CAS  Google Scholar 

  • Moafi HF, Shojaie AF, Zanjanchi MA (2010) The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers. Appl Surf Sci 256(13):4310–4316

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids Surf B 89:196–202

    Article  CAS  Google Scholar 

  • Mura S, Greppi G, Malfatti L, Lasio B, Sanna V, Mura ME, Lugliè A (2015) Multifunctionalization of wool fabrics through nanoparticles: a chemical route towards smart textiles. J Colloid Interface Sci 456:85–92

    Article  CAS  PubMed  Google Scholar 

  • Pakdel E, Daoud WA (2013) Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. J Colloid Interface Sci 401:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pierre AC (2019) From random glass networks to random silica gel networks and their use as host for biocatalytic applications. J Solgel Sci Technol. 90(1):172–186

    Article  CAS  Google Scholar 

  • Qin Z, Chen Y, Zhang P, Zhang G, Liu Y (2010) Structure and properties of Cu (II) complex bamboo pulp fabrics. J Appl Polym Sci 117(3):1843–1850

    CAS  Google Scholar 

  • Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118(3):702–711

    Article  CAS  Google Scholar 

  • Ren G, Song Y, Li X, Wang B, Zhou Y, Wang Y, Zhu X (2018) A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property. J Colloid Interface Sci 522:57–62

    Article  CAS  PubMed  Google Scholar 

  • Roe B, Zhang X (2009) Durable hydrophobic textile fabric finishing using silica nanoparticles and mixed silanes. Text Res J 79(12):1115–1122

    Article  CAS  Google Scholar 

  • Sawhney APS, Condon B, Singh KV, Pang SS, Li G, Hui D (2008) Modern applications of nanotechnology in textiles. Text Res J 78(8):731–739

    Article  CAS  Google Scholar 

  • Shen Q, Liu DS, Gao Y, Chen Y (2004) Surface properties of bamboo fiber and a comparison with cotton linter fibers. Colloids Surf B 35(3–4):193–195

    Article  CAS  Google Scholar 

  • Shirgholami MA, Khalil-Abad MS, Khajavi R, Yazdanshenas ME (2011) Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution–immersion process. J Colloid Interface Sci 359(2):530–535

    Article  CAS  PubMed  Google Scholar 

  • Simoncic B, Tomsic B, Orel B, Jerman I (2010) Surface modification systems for creating stimuli responsiveness of textiles. University of Twente, The Netherlands, 17

  • Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28(2):216–238

    Article  CAS  Google Scholar 

  • Stanssens D, Van den Abbeele H, Vonck L, Schoukens G, Deconinck M, Samyn P (2011) Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett 65(12):1781–1784

    Article  CAS  Google Scholar 

  • Tang B, Sun L, Li J, Kaur J, Zhu H, Qin S, Wang X (2015) Functionalization of bamboo pulp fabrics with noble metal nanoparticles. Dyes Pigm 113:289–298

    Article  CAS  Google Scholar 

  • Tomšič B, Simončič B, Orel B, Černe L, Tavčer PF, Zorko M, Kovač J (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Solgel Sci Technol 47(1):44–57

    Article  CAS  Google Scholar 

  • Ulrich DR (1990) Prospects for sol-gel processes. J Non-Cryst Solids 121(1–3):465–479

    Article  CAS  Google Scholar 

  • Wang N, Wang Y, Shang B, Wen P, Peng B, Deng Z (2018) Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation. J Colloid Interface Sci 531:300–310

    Article  CAS  PubMed  Google Scholar 

  • Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam HLI (2006) Selected applications of nanotechnology in textiles. AUTEX Res J 6:1–8

    Google Scholar 

  • Wu Y, Zhao M, Guo Z (2017) Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles. J Colloid Interface Sci 506:649–658

    Article  CAS  PubMed  Google Scholar 

  • Xin JH, Daoud WA, Kong YY (2004) A new approach to UV-blocking treatment for cotton fabrics. Text Res J 74(2):97–100

    Article  CAS  Google Scholar 

  • Yang CQ, Wang X (1996) Formation of cyclic anhydride intermediates and esterification of cotton cellulose by multifunctional carboxylic acids: an infrared spectroscopy study. Text Res J 66(9):595–603

    Article  CAS  Google Scholar 

  • Yang H, Zhu S, Pan N (2004) Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym Sci 92(5):3201–3210

    Article  CAS  Google Scholar 

  • Yang M, Liu W, Jiang C, He S, Xie Y, Wang Z (2018) Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohy. Polym. 197:75–82

    Article  CAS  Google Scholar 

  • Zhao J, Milanova M, Warmoeskerken MM, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf A Physicochem Eng Asp 413:273–279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Mehran University of Engineering and Technology Jamshoro Sindh Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awais Khatri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhatial, A.K., Khatri, A., Ali, S. et al. Sol–gel finishing of bamboo fabric with nanoparticles for water repellency, soil release and UV resistant characteristics. Cellulose 26, 6365–6378 (2019). https://doi.org/10.1007/s10570-019-02537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02537-3

Keywords

Navigation