Skip to main content
Log in

Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields

  • Communication
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper reports a strong and tough cellulose long fiber (CLF) fabrication by aligning cellulose nanofiber (CNF) through simultaneous application of magnetic and electric fields. As an ingredient of the CLF, CNF is isolated from hardwood by the combination of chemical and physical methods. A wet-state cellulose long fiber (WCLF) is fabricated by wet spinning. 5T magnetic field, generated in a superconducting DC magnet, is applied to perpendicular to the WCLF. An electric field of 50 V/cm at 100 Hz is applied along the WCLF between two electrode supports. Scanning electron microscopy, two-dimensional wide-angle X-ray diffraction and tensile test demonstrate that when the magnetic and electric fields are applied simultaneously, its Young’s modulus, tensile strength, yield strength, strain at break and toughness of the fabricated CLF are greatly improved with the highest degree of CNF orientation. Unusual toughness improvement of the CLF with other mechanical properties is very promising for fabricating strong and tough CLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Bordel D, Putaux JL, Heux L (2006) Orientation of native cellulose in an electric field. Langmuir 22:4899–4901

    Article  CAS  PubMed  Google Scholar 

  • Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4:327–339

    Article  CAS  Google Scholar 

  • Crespy D, Friedemann K, Popa AM (2012) Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions. Macromol Rapid Commun 33:1978–1995

    Article  CAS  PubMed  Google Scholar 

  • Hai LV, Zhai L, Kim HC, Kim JW, Choi ES, Kim J (2018) Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydr Polym 191:65–70

    Article  CAS  PubMed  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Kafy A, Kim HC, Zhai L, Kim JW, Hai LV, Kang TJ, Kim J (2017) Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci Rep 7:17683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Chen Y, Kang KS, Park YB, Schwartz M (2008) Magnetic field effect for cellulose nanofiber alignment. J Appl Phys 104:096104

    Article  CAS  Google Scholar 

  • Kim JH, Shim BS, Kim HS, Lee YJ, Min SK, Jang D, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol 2:197–213

    Article  Google Scholar 

  • Kim HC, Mun S, Ko HU, Zhai L, Kafy A, Kim J (2016) Renewable smart materials. Smart Mater Struct 25:073001

    Article  CAS  Google Scholar 

  • Kim HC, Kim D, Lee JY, Zhai L, Kim J (2019) Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. Int J Precis Eng Manuf Green Technol (in press). https://doi.org/10.1007/s40684-019-00070-z

  • Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290

    Article  CAS  PubMed  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42:856–873

    Article  CAS  Google Scholar 

  • Mao Y, Bleuel M, Lyu Y, Zhang X, Henderson D, Wang H, Briber RM (2018) Phase separation and stack alignment in aqueous cellulose nanocrystal suspension under weak magnetic field. Langmuir 34:8042–8051

    Article  CAS  PubMed  Google Scholar 

  • Mittal N, Ansari F, Gowda VK, Brouzet C, Chen P, Larsson PT, Roth SV, Lundell F, Wågberg L, Kotov NA, Söderberg LD (2018) Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12:6378–6388

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromol 13:2528–2536

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14:248–253

    Article  CAS  Google Scholar 

  • Sinko R, Mishra S, Ruiz L, Brandis N, Keten S (2013) Dimensions of biological cellulose nanocrystals maximize fracture strength. ACS Macro Lett 3:64–69

    Article  CAS  Google Scholar 

  • Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Iwata T (2006) Formation of highly ordered structure in poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules 39:2940–2946

    Article  CAS  Google Scholar 

  • Thielke MW, Secker C, Schlaad H, Theato P (2016) Electrospinning of crystallizable polypeptoid fibers. Macromol Rapid Commun 37:100–104

    Article  CAS  PubMed  Google Scholar 

  • Torres-Rendon JG, Schacher FH, Ifuku S, Walther A (2014) Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromol 15:2709–2717

    Article  CAS  Google Scholar 

  • Xu S, Liu D, Zhang Q, Fu Q (2018) Electric field-induced alignment of nanofibrillated cellulose in thermoplastic polyurethane matrix. Compos Sci Technol 156:117–126

    Article  CAS  Google Scholar 

  • Zhai L, Kim HC, Kim JW, Kang J, Kim J (2018) Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision. Cellulose 25:4261–4268

    Article  CAS  Google Scholar 

  • Zhao HP, Feng XQ (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112

    Article  CAS  Google Scholar 

  • Zhu H, Zhu S, Zia Z, Parvinian S, Li Y, Vaaland O, Hu L, Li T (2015) Anomalous scaling law of strength and toughness of cellulose nanopaper. PNAS 112:8971–8976

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Creative Research Initiatives Program through the National Research Foundation of Korea (NRF-2015R1A3A2066301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehwan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.C., Kim, J.W., Zhai, L. et al. Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields. Cellulose 26, 5821–5829 (2019). https://doi.org/10.1007/s10570-019-02496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02496-9

Keywords

Navigation