Skip to main content
Log in

A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Two lignocellulosic nanofibrils (LCNF) were produced from celery using oxalic acid hydrolysis and sonication (OS) or refining by a SuperMassColloider grinder treatment (MT). Physicochemical properties, such as morphological properties, crystallinity, thermal stability, zeta potential and transmittance for the obtained nanofibrils were evaluated. Compared to refining in SuperMassColloider grinder, OS treatment contributed greater separation of nanofibril bundles by introducing negative carboxyl groups. In detail, mechanical fibrillation resulted in the LCNF with longer length and thicker diameter. OS treatment produced LCNF with smaller height of 5.5 nm and higher aspect ratio than the one obtained by MT treatment, and endowed high crystallinity and thermal stability due to its preferential degradation of amorphous carbohydrates and lignin. Furthermore, OS-LCNF with carboxyl group contributed more stable aqueous suspension with surface charge of − 32.9 mV, better than MT-LCNF sample with entangled network structure. The comparative study can gain insight into the use of celery as a potential source for nanocellulose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Bian H, Chen L, Dai HQ et al (2017a) Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose 24:4205–4216

    Article  CAS  Google Scholar 

  • Bian H, Chen LH, Gleisner R et al (2017b) Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chem 19:3370–3379

    Article  CAS  Google Scholar 

  • Bian H, Gao Y, Yang Y et al (2018) Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour Technol 256:321–327

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317

    Article  CAS  Google Scholar 

  • Chen L, Zhu JY, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    Article  CAS  Google Scholar 

  • Cherian BM, Pothan LA, Nguyen-Chung T et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627

    Article  CAS  PubMed  Google Scholar 

  • Costa ALR, Gomes A, Tibolla H et al (2018) Cellulose nanofibers from banana peels as a Pickering emulsifier: high-energy emulsification processes. Carbohydr Polym 194:122–131

    Article  CAS  PubMed  Google Scholar 

  • Espinosa E, Tarrés Q, Delgado-Aguilar M et al (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852

    Article  CAS  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I et al (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F et al (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhu H, Chen Y et al (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Singh K, Zondlo J (2013) Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion Method. Agriculture 3:12–32

    Article  CAS  Google Scholar 

  • Li MC, Wu Q, Song K et al (2015) Cellulose nanoparticles: structure-morphology-rheology relationship. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  • Li MY, Hou XL, Wang F et al (2018) Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol 38:1–12

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  PubMed  Google Scholar 

  • Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75:987–998

    Article  CAS  Google Scholar 

  • Robles-García MÁ, Del-Toro-Sánchez CL, Márquez-Ríos E et al (2018) Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization. Carbohydr Polym 192:69–74

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Peresin MS, Sampson WW et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R et al (2010) Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass. Natl Renew Energy Lab

  • Spence KL, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Tarrés Q, Ehman NV, Vallejos ME et al (2017) Lignocellulosic nanofibers from triticale straw: the influence of hemicelluloses and lignin in their production and properties. Carbohydr Polym 163:20–27

    Article  CAS  PubMed  Google Scholar 

  • Tripathi A, Ferrer A, Khan SA, Rojas OJ (2017) Morphological and thermochemical changes upon autohydrolysis and microemulsion treatments of coir and empty fruit bunch residual biomass to isolate lignin-rich micro- and nanofibrillar cellulose. ACS Sustain Chem Eng 5:2483–2492

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yu H, Yan C, Lei X et al (2014) Novel approach to extract thermally stable cellulose nanospheres with high yield. Mater Lett 131:12–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (31370573). Also, the authors gratefully acknowledge financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Huang, K., Xu, Y. et al. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation. Cellulose 26, 5237–5246 (2019). https://doi.org/10.1007/s10570-019-02454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02454-5

Keywords

Navigation