Skip to main content

Advertisement

Log in

Carbonized cotton fabric-based multilayer piezoresistive pressure sensors

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Piezoresistive pressure sensors have attracted much attention for their potential applications in health monitoring, wearable devices, electronic skin and smart robots. Herein, we report an innovative strategy to fabricate multilayer piezoresistive pressure sensors with polydimethylsiloxane anchored carbonized cotton fabric (PACCF). Due to the good conductivity of carbonized cotton fabric and the multilayer structure to construct three-dimensional conductive network, the sensor possessed not only a wide pressure detection range, but also an ultrahigh sensitivity of 13.89 kPa−1 (0–6 kPa). Moreover, the sensor also exhibited fast response and excellent repeatability even after 500 loading–unloading cycles. Importantly, the sensor was successfully applied for detecting pulses, airflow, weak vibration and various body motions. Additionally, the sensors integrated sensing matrix also realized mapping and identifying spatial pressure distribution. Our method to fabricate PACCF-based multilayer piezoresistive pressure sensor is simple, efficient and low-cost; no special equipment or chemicals is required, and cotton as main raw material is natural and renewable, which is very beneficial for large-scale production. Our findings conceivably stand out as a new tool to fabricate high-performance pressure sensors in the fields of healthcare and emerging intelligent electronics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cai Y, Shen J, Dai Z, Zang X, Dong Q, Guan G, Li LJ, Huang W, Dong X (2017) Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors. Adv Mater 29:1606411

    Article  CAS  Google Scholar 

  • Chen Q, Cao PF, Advincula RC (2018) Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Adv Funct Mater 28:1800631

    Article  CAS  Google Scholar 

  • Choong CL, Shim MB, Lee BS, Jeon S, Ko DS, Kang TH, Bae J, Lee SH, Byun KE, Im J (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26:3451–3458

    Article  CAS  PubMed  Google Scholar 

  • Chun S, Kim Y, Oh H-S, Bae G, Park W (2015) A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 7:11652–11659

    Article  CAS  PubMed  Google Scholar 

  • Deng C, Pan L, Cui R, Li C, Qin J (2017) Wearable strain sensor made of carbonized cotton cloth. J Mater Sci: Mater Electron 28:3535–3541

    CAS  Google Scholar 

  • Gao J, Hu M, Dong Y, Li RK (2013) Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties. ACS Appl Mater Interfaces 5:7758–7764

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

    Article  CAS  PubMed  Google Scholar 

  • Hao T, Sun J, Wang W, Yu D (2018) MWCNTs-COOH/cotton flexible supercapacitor electrode prepared by improvement one-time dipping and carbonization method. Cellulose 25:4031–4041

    Article  CAS  Google Scholar 

  • He W, Li G, Zhang S, Wei Y, Wang J, Li Q, Zhang X (2015) Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating. ACS Nano 9:4244–4251

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Lu NS, Ma R, Kim Y-S, Kim R-H, Wang SD, Wu J, Won SM, Tao H, Islam A (2011) Epidermal electronics. Science 333:838–843

    Article  CAS  PubMed  Google Scholar 

  • Konwar A, Baruah U, Deka MJ, Hussain AA, Haque SR, Pal AR, Chowdhury D (2017) Tea-carbon dots-reduced graphene oxide: an efficient conducting coating material for fabrication of an E-textile. ACS Sustain Chem Eng 5:11645–11651

    Article  CAS  Google Scholar 

  • Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27:2433–2439

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hu YS, Titirici MM, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659

    Article  CAS  Google Scholar 

  • Liang Y, Xiao P, Wang S, Shi J, He J, Zhang J, Huang Y, Chen T (2018) Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics. J Mater Chem C 6:6666–6671

    Article  CAS  Google Scholar 

  • Lin D, Zeng X, Li H, Lai X (2018) Facile fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via layer-by-layer assembly. Cellulose 25:3135–3149

    Article  CAS  Google Scholar 

  • Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL (2017) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29:1703700

    Article  CAS  Google Scholar 

  • Liu W, Liu N, Yue Y, Rao J, Cheng F, Su J, Liu Z, Gao Y (2018) Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14:1704149

    Article  CAS  Google Scholar 

  • Lou Z, Chen S, Wang L, Jiang K, Shen G (2016) An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23:7–14

    Article  CAS  Google Scholar 

  • Lou Z, Li L, Wang L, Shen G (2017) Recent progress of self-powered sensing systems for wearable electronics. Small 13:1701791

    Article  CAS  Google Scholar 

  • Ma Z, Wei A, Ma J, Shao L, Jiang H, Dong D, Ji Z, Wang Q, Kang S (2018) Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale 10:7116–7126

    Article  CAS  PubMed  Google Scholar 

  • Pang C, Lee G-Y, T-i Kim, Kim SM, Kim HN, Ahn S-H, Suh K-Y (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee Y, Hong J, Ha M, Jung Y-D, Lim H, Kim SY, Ko H (2014) Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8:4689–4697

    Article  CAS  PubMed  Google Scholar 

  • Park H, Jeong YR, Yun J, Hong SY, Jin S, Lee S-J, Zi G, Ha JS (2015) Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 9:9974–9985

    Article  CAS  PubMed  Google Scholar 

  • Su X, Li H, Lai X, Zhang L, Liang T, Feng Y, Zeng X (2017) Polydimethylsiloxane-based superhydrophobic surfaces on steel substrate: fabrication, reversibly extreme wettability and oil-water separation. ACS Appl Mater Interfaces 9:3131–3141

    Article  CAS  PubMed  Google Scholar 

  • Su X, Li H, Lai X, Yang Z, Chen Z, Wu W, Zeng X (2018) Vacuum-assisted layer-by-layer superhydrophobic carbon nanotube films with electrothermal and photothermal effects for deicing and controllable manipulation. J. Mater. Chem. A 6:16910–16919

    Article  CAS  Google Scholar 

  • Tao L-Q, Zhang K-N, Tian H, Liu Y, Wang D-Y, Chen Y-Q, Yang Y, Ren T-L (2017) Graphene-paper pressure sensor for detecting human motions. ACS Nano 11:8790–8795

    Article  CAS  PubMed  Google Scholar 

  • Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L (2014) Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater 26:2659–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan P, Yin S, Liu L, Li Y, Liu Y, Wang X, Leow W, Ma B, Chen X (2014) Graphene carrier for magneto-controllable bioelectrocatalysis. Small 10:647–652

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K (2015) A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7:2926–2932

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657

    Article  CAS  Google Scholar 

  • Wang Y, Hao J, Huang Z, Zheng G, Dai K, Liu C, Shen C (2018) Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126:360–371

    Article  CAS  Google Scholar 

  • Wei Y, Chen S, Li F, Lin Y, Zhang Y, Liu L (2015) Highly stable and sensitive paper-based bending sensor using silver nanowires/layered double hydroxides hybrids. ACS Appl Mater Interfaces 7:14182–14191

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Chen S, Lin Y, Yuan X, Liu L (2016) Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C 4:935–943

    Article  CAS  Google Scholar 

  • Wu X, Han Y, Zhang X, Zhou Z, Lu C (2016) Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv Funct Mater 26:6246–6256

    Article  CAS  Google Scholar 

  • Xia S, Song S, Gao G (2018) Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem Eng J 354:817–824

    Article  CAS  Google Scholar 

  • Xiang L, Zhang H, Hu Y, Peng L-M (2018) Carbon nanotube-based flexible electronics. J Mater Chem C 6:7714–7727

    Article  CAS  Google Scholar 

  • Xu X, Wang R, Nie P, Cheng Y, Lu X, Shi L, Sun J (2017) Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl Mater Interfaces 9:14273–14280

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li L, Zhao J, Wang J, Xie J, Cao Y, Xue M, Lu C (2018a) Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of polypyrrole films. ACS Appl Mater Interfaces 10:25811–25818

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Pang Y, X-l Han, Yang Y, Ling J, Jian M, Zhang Y, Yang Y, Ren T-L (2018b) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12:9134–9141

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Wang C, Wang H, Jian M, Hao X, Zhang Y (2017) Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater 27:1604795

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235–241

    Article  CAS  Google Scholar 

  • Zhong W, Liu Q, Wu Y, Wang Y, Qing X, Li M, Liu K, Wang W, Wang D (2016) A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale 8:12105–12112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Science and Technology Planning Project of Guangdong Province, China (2017B090915002), the Science and Technology Planning Project of Guangzhou City, China (201804010381) and the Guangdong College Students’ Science and Technology Innovation Foster Special Funds (2018pdjhb0032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongqiang Li or Xingrong Zeng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1862 kb)

Supplementary material 2 (AVI 4722 kb)

Supplementary material 3 (AVI 11224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, H., Lai, X. et al. Carbonized cotton fabric-based multilayer piezoresistive pressure sensors. Cellulose 26, 5001–5014 (2019). https://doi.org/10.1007/s10570-019-02432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02432-x

Keywords

Navigation