Skip to main content

Advertisement

Log in

Hyperbranched polymer–silver nanohybrid induce super antibacterial activity and high performance to cotton fabric

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein we present a novel approach for synthesis, characterization and application of a benign hyperbranched polyester amide–silver nanohybrid (Ag/HBPEA). The Ag/HBPEA is developed through three distinct steps. The first step involves amidation reaction of diethanol amine and maleic anhydride to yield AB2 monomer (adduct 1). The second step comprises reaction of adduct 1 with trimethylol propane in presence of catalyst to yield HBPEA. The third step entails reduction of silver nitrate by sodium borohydride reductant to effect in situ formation of AgNPs which are stabilized by HBPEA, leading ultimately to Ag/HBPEA nanohybrid. Both Ag/HBPEA nanohybrid and HBPEA are independently applied to cotton fabrics as per the conventional pad-dry-cure technique. To this end, through investigations into the structures of Ag/HBPEA nanohybrid and HBPEA stabilizer before and after application to cotton fabric using advanced techniques emphasize the Ag/HBPEA nanohybrid as multifunctional finishing agent rather than a super antibacterial activity of the cotton fabrics after treatment with Ag/HBPEA nanohybrid speaks of this. Current research generally addresses green chemistry because treatments involved therein are based on green basics and practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asif A, Shi W (2004) UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physical and thermal properties. Polym Adv Technol 15:669–675

    Article  CAS  Google Scholar 

  • Balkan T, Kizir S, Tuncel D (2017) One-pot synthesis of hybrid conjugated oligomer-ag nanoparticles. ACS Omega 2:5470–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgart H, Meisenburg U, Toboll P, Joost K-H, Schwalm R (2011) Aqueous dispersion and the use thereof in the production of coating agents, adhesives and sealing agents that can be cured by heat or by actinic radiation. Google Patents

  • Chen D, Chang C-C, Cooper B, Silvers A, Emrick T, Hayward RC (2015) Photopatternable biodegradable aliphatic polyester with pendent benzophenone groups. Biomacromol 16:3329–3335

    Article  CAS  Google Scholar 

  • Das T, Sengupta S, Bandyopadhyay A (2018) Part I—synthesis of hyperbranched polymers: step-growth methods. In: Kalia S (ed) Hyperbranched polymers for biomedical applications. Springer, Berlin, pp 15–63

    Chapter  Google Scholar 

  • Dewaele M, Leprince J, Fallais I, Devaux J, Leloup G (2012) Benefits and limitations of adding hyperbranched polymers to dental resins. J Dent Res 91:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar ME, Shaarawy S, Hebeish A (2018a) Bactericidal finishing of loomstate, scoured and bleached cotton fibres via sustainable in situ synthesis of silver nanoparticles. Int J Biol Macromol 106:1192–1202

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar ME, Shaarawy S, Hebeish A (2018b) Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydr Polym 181:307–316

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  • Gao Q, Li H, Zeng X (2011) Preparation and characterization of UV-curable hyperbranched polyurethane acrylate. J Coat Technol Res 8:61–66

    Article  CAS  Google Scholar 

  • Gregorowicz J et al (2013) Synthesis, characterization, and solubility in supercritical carbon dioxide of hyperbranched copolyesters. Macromolecules 46:7180–7195

    Article  CAS  Google Scholar 

  • Hebeish A, El-Naggar M, Fouda MM, Ramadan M, Al-Deyab SS, El-Rafie M (2011) Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr Polym 86:936–940

    Article  CAS  Google Scholar 

  • Hebeish A, El-Rafie M, El-Sheikh M, El-Naggar ME (2013) Nanostructural features of silver nanoparticles powder synthesized through concurrent formation of the nanosized particles of both starch and silver. J Nanotechnol 13:10

    Google Scholar 

  • Hebeish A, El-Rafie M, El-Sheikh M, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515

    Article  CAS  PubMed  Google Scholar 

  • Hebeish A, Shaheen TI, El-Naggar ME (2016) Solid state synthesis of starch-capped silver nanoparticles. Int J Biol Macromol 87:70–76

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim N, Fahmy H, Rehim MA, Sharaf S, Abo-Shosha M (2010) Finishing of cotton fabrics with hyperbranched poly (ester-amine) to enhance their antibacterial properties and UV protection. Polym Plast Technol Eng 49:1297–1304

    Article  CAS  Google Scholar 

  • Ibrahim N, Eid B, El-Batal H (2012) A novel approach for adding smart functionalities to cellulosic fabrics. Carbohydr Polym 87:744–751

    Article  CAS  Google Scholar 

  • Jinlian H (2011) Adaptive and functional polymers, textiles and their applications. World Scientific, Singapore

    Google Scholar 

  • Kim YH, Webster O (1999) Hyperbranched polymers. Plast Eng N Y 53:201–238

    CAS  Google Scholar 

  • Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr Polym 80:197–207

    Article  CAS  Google Scholar 

  • Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158

    Article  CAS  Google Scholar 

  • Lebarbé T, Neqal M, Grau E, Alfos C, Cramail H (2014) Branched polyethylene mimicry by metathesis copolymerization of fatty acid-based α, ω-dienes. Green Chem 16:1755–1758

    Article  Google Scholar 

  • Li K, Zhang F-S (2010) A novel approach for preparing silver nanoparticles under electron beam irradiation. J Nanopart Res 12:1423–1428

    Article  CAS  Google Scholar 

  • Malek F, Riahi A, Isaad J (2015) New aromatic–aliphatic co-polyesters: effect of the structural characteristic on the thermal properties. J Mater Environ Sci 6(5):1377–1385

    Google Scholar 

  • Marsh T (2008) High performance hyperbranched polymers for improved processing and mechanical properties in thermoset composites. Case Western Reserve University, Cleveland

    Google Scholar 

  • Mokhtari S (2015) Shear-associative polymers for ophthalmic applications

  • Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L-A (2010) Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 7:1387–1398

    Article  CAS  PubMed  Google Scholar 

  • Rahman OU, Bhat SI, Yu H, Ahmad S (2017) Hyperbranched soya alkyd nanocomposite: a sustainable feedstock based anticorrosive nanocomposite coatings. ACS Sustain Chem Eng 5:9725–9734

    Article  CAS  Google Scholar 

  • Román F, Colomer P, Calventus Y, Hutchinson JM (2016) Molecular mobility in hyperbranched polymers and their interaction with an epoxy matrix. Materials 9:192

    Article  CAS  PubMed Central  Google Scholar 

  • Sadeghi-Kiakhani M, Safapour S (2015) Salt-free reactive dyeing of the cotton fabric modified with chitosan-poly (propylene imine) dendrimer hybrid. Fibers Polym 16:1075–1081

    Article  CAS  Google Scholar 

  • Satoh T (2012) Synthesis of hyperbranched polymer using slow monomer addition method. Int J Polym Sci 2012:816163-1–816163-8

    Article  CAS  Google Scholar 

  • Segawa Y, Higashihara T, Ueda M (2010) Hyperbranched polymers with controlled degree of branching from 0 to 100%. J Am Chem Soc 132:11000–11001

    Article  CAS  PubMed  Google Scholar 

  • Seiler M (2006) Hyperbranched polymers: phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib 241:155–174

    Article  CAS  Google Scholar 

  • Tomuta AM, Ramis Juan X, de la Flor López S, Serra Albet À (2013) Influence of end groups in hyperbranched polyesters used as modifiers in the characteristics of epoxy thermosets cured by adipic dihydrazide. Express Polym Lett 7:595–606

    Article  CAS  Google Scholar 

  • Varadarajan G, Venkatachalam P (2016) Sustainable textile dyeing processes. Environ Chem Lett 14:113–122

    Article  CAS  Google Scholar 

  • Wilms D, Stiriba S-E, Frey H (2009) Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc Chem Res 43:129–141

    Article  CAS  Google Scholar 

  • Yan D, Gao C, Frey H (2011) Hyperbranched polymers: synthesis, properties, and applications, vol 8. Wiley, Hoboken

    Book  Google Scholar 

  • Zhang D, Jia D (2006) Synthesis of novel low-viscosity liquid epoxidized aromatic hyperbranched polymers. Eur Polym J 42:711–714

    Article  CAS  Google Scholar 

  • Zhang F, Chen Y, Lin H, Wang H, Zhao B (2008) HBP-NH 2 grafted cotton fiber: preparation and salt-free dyeing properties. Carbohydr Polym 74:250–256

    Article  CAS  Google Scholar 

  • Zhang D, Chen L, Zang C, Chen Y, Lin H (2013) Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydr Polym 92:2088–2094

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44:4091–4130

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrez E. El-Naggar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebeish, A., El-Naggar, M.E., Tawfik, S. et al. Hyperbranched polymer–silver nanohybrid induce super antibacterial activity and high performance to cotton fabric. Cellulose 26, 3543–3555 (2019). https://doi.org/10.1007/s10570-019-02319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02319-x

Keywords

Navigation