Skip to main content

Part I—Synthesis of Hyperbranched Polymers: Step-Growth Methods

  • Chapter
  • First Online:
Hyperbranched Polymers for Biomedical Applications

Abstract

Following the extensive works on dendrimers which are structurally perfect but tedious to prepare, the need for the development of structurally imperfect hyperbranched (hb) polymers has gained momentum. A dendrimer is constituted of terminal units (at the globular surface) and dendritic units (inside the macromolecular framework). Whereas a hb polymer is constituted of terminal units (at the irregular surface), linear units and dendritic units (both of which are distributed randomly inside the macromolecular framework). These structural variations in dendrimers and hb polymers arise from the difference in synthesis strategies and mechanism of their formation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DB:

Degree of branching

DP:

Degree of polymerization

FRP:

Free radical polymerization

Hb:

Hyperbranched

M.W:

Molecular weight

M.W.D:

Molecular Weight Distribution

NMP:

N-methyl-2-pyrrolidinone solvent

P.D.I:

Poly dispersity index

PC:

Polycarbonate

PG:

Poly glycerol

ROP:

Ring opening polymerization

References

  1. Gao C, Yan D, Frey H (2011) Promising dendritic materials: an introduction to hyperbranched polymers. In: Hyperbranched polymers, John Wiley & Sons, Inc.: pp 1–26

    Google Scholar 

  2. Voit B (2000) New developments in hyperbranched polymers. J Polym Sci A Polym Chem 38(14):2505–2525

    Article  CAS  Google Scholar 

  3. Flory PJ (1953) Principles of polymer chemistry. 1st ed. Cornell University Press, Ithaca, United States

    Google Scholar 

  4. Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation1. J Am Chem Soc 63(11):3083–3090

    Article  CAS  Google Scholar 

  5. Flory PJ (1952) Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units. J Am Chem Soc 74(11):2718–2723

    Article  CAS  Google Scholar 

  6. Hölter D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polym 48(1–2):30–35

    Article  Google Scholar 

  7. Beginn U, Drohmann C, Moller M (1997) Conversion dependence of the branching density for the polycondensation of AB n monomers. Macromolecules 30(14):4112–4116

    Article  CAS  Google Scholar 

  8. Malmstrom E, Johansson M, Hult A (1995) Hyperbranched aliphatic polyesters. Macromolecules 28(5):1698–1703

    Article  Google Scholar 

  9. Hawker CJ, Lee R, Frechet JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113(12):4583–4588

    Article  CAS  Google Scholar 

  10. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer Architectures synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973

    Article  CAS  Google Scholar 

  11. Korolev GV, Bubnova ML (2007) Synthesis, properties, and practical application of hyperbranched polymers. Polym Sci Ser 49(4):332–354

    Article  Google Scholar 

  12. Kim YH, Webster OW (1992) Hyperbranched polyphenylenes. Macromolecules 25(21):5561–5572

    Article  CAS  Google Scholar 

  13. Peng H, Dong Y, Jia D, Tang B (2004) Syntheses of readily processable, thermally stable, and light-emitting hyperbranched polyphenylenes. Chin Sci Bull 49(24):2637–2639

    Article  CAS  Google Scholar 

  14. Tanaka S, Doke Y, Iso T (1997) Preparation of new branched poly(triphenylamine). Chem Commun 21:2063–2064

    Article  Google Scholar 

  15. Sun M, Li J, Li B, Fu Y, Bo Z (2005) Toward high molecular weight triphenylamine-based hyperbranched polymers. Macromolecules 38(7):2651–2658

    Article  CAS  Google Scholar 

  16. Bo Z, Schluter AD (2003) “AB2 + AC2” approach to hyperbranched polymers with a high degree of branching. Chem Commun 18:2354–2355

    Article  Google Scholar 

  17. Huang W, Su L, Bo Z (2009) Hyperbranched polymers with a degree of branching of 100% prepared by catalyst transfer suzuki–miyaura polycondensation. J Am Chem Soc 131(30):10348–10349

    Article  CAS  Google Scholar 

  18. Maier G, Zech C, Voit B, Komber H (1998) An approach to hyperbranched polymers with a degree of branching of 100%. Macromol Chem Phys 199(12):2655–2664

    Article  CAS  Google Scholar 

  19. Lim S-J, Seok DY, An BK, Jung SD, Park SY (2006) A modified strategy for the synthesis of hyperbranched poly(p-phenylenevinylene): achieving extended π-conjugation with growing molecular weight. Macromolecules 39(1):9–11

    Article  CAS  Google Scholar 

  20. Dieck HA, Heck RF (1974) Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions. J Am Chem Soc 96(4):1133–1136

    Article  CAS  Google Scholar 

  21. Nishide H, Nambo M, Miyasaka M (2002) Hyperbranched poly(phenylenevinylene) bearing pendant phenoxys for a high-spin alignment. J Mater Chem 12(12):3578–3584

    Article  CAS  Google Scholar 

  22. Fukuzaki E, Nishide H (2006) Room-temperature high-spin organic single molecule: nanometer-sized and hyperbranched poly[1,2, (4)-phenylenevinyleneanisylaminium]. J Am Chem Soc 128(3):996–1001

    Article  CAS  Google Scholar 

  23. Lu P, Paulasaari JK, Weber WP (1996) Hyperbranched poly(4-Acetylstyrene) by ruthenium-catalyzed step-growth polymerization of 4-acetylstyrene. Macromolecules 29(27):8583–8586

    Article  CAS  Google Scholar 

  24. In I, Lee H, Kim SY (2003) Synthesis of hyperbranched poly(phenylene oxide) by ullmann polycondensation and subsequent utilization as unimolecular micelle. Macromol Chem Phys 204(13):1660–1664

    Article  CAS  Google Scholar 

  25. Tolosa J, Kub C, Bunz UHF (2009) Hyperbranched: a universal conjugated polymer platform. Angew Chem Int Ed 48(25):4610–4612

    Article  CAS  Google Scholar 

  26. Li ZA, Wu W, Ye C, Qin J, Li Z (2010) New second-order nonlinear optical polymers derived from AB2 and AB monomers via sonogashira coupling reaction. Macromol Chem Phys 211(8):916–923

    Article  CAS  Google Scholar 

  27. Fussell AL, Isomaki A, Strachan CJ (2013) Non-linear optical imaging—introduction and pharmaceutical applications. Am Pharmaceut Rev 16(6):54–63

    CAS  Google Scholar 

  28. Stille JK (1972) Cycloaddition polymerization. Die Makromolekulare Chemie 154(1):49–61

    Article  CAS  Google Scholar 

  29. Morgenroth F, Mullen K (1997) Dendritic and hyperbranched polyphenylenes via a simple Diels-Alder route. Tetrahedron 53(45):15349–15366

    Article  CAS  Google Scholar 

  30. Harrison RM, Feast WJ (1997) ACS Polym Mater Sci Eng 77:162

    CAS  Google Scholar 

  31. Abadie MJM (2012) High performance polymers—polyimides based—from chemistry to applications. InTech:

    Google Scholar 

  32. Gok O, Durmaz H, Ozdes ES, Hizal G, Tunca U, Sanyal A (2010) Maleimide-based thiol reactive multiarm star polymers via Diels-Alder/retro Diels-Alder strategy. J Polym Sci A Polym Chem 48(12):2546–2556

    Article  CAS  Google Scholar 

  33. Sanyal A (2010) Diels-alder cycloaddition-cycloreversion: a powerful combo in materials design. Macromol Chem Phys 211(13):1417–1425

    Article  CAS  Google Scholar 

  34. Froimowicz P, Frey H, Landfester K (2011) Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol Rapid Commun 32(5):468–473

    Article  CAS  Google Scholar 

  35. Itoya K, Kakimoto M, Imai Y (1994) High-pressure synthesis of new aromatic poly(diazetidinediones) by cyclodimerization polymerization of aromatic diisocyanates. Macromolecules 27(25):7231–7235

    Article  CAS  Google Scholar 

  36. Xu KT, Tang BZ (1999) Polycyclotrimerization of diynes, a new approach to hyperbranched polyphenylenes. Chin J Polym Sci 17(4):397–402

    CAS  Google Scholar 

  37. Peng H, Cheng L, Luo J, Xu K, Sun Q, Dong Y, Salhi F, Lee PPS, Chen J, Tang BZ (2002) Simple synthesis, outstanding thermal stability, and tunable light-emitting and optical-limiting properties of functional hyperbranched polyarylenes. Macromolecules 35(14):5349–5351

    Article  CAS  Google Scholar 

  38. Jin RH, Motokucho S, Andou Y, Nishikubo T (1998) Controlled polymerization of an AB2 monomer using a chloromethylarene as comonomer: branched polymers from activated methylene compounds. Macromol Rapid Commun 19(1):41–46

    Article  CAS  Google Scholar 

  39. In I, Kim SY (2005) Hyperbranched poly(arylene ether amide) via nucleophilic aromatic substitution reaction. Macromol Chem Phys 206(18):1862–1869

    Article  CAS  Google Scholar 

  40. Yang D, Kong J (2016) 100% hyperbranched polymers via the acid-catalyzed friedel-crafts aromatic substitution reaction. Polym. Chem. 7(33):5226–5232

    Article  CAS  Google Scholar 

  41. Kim Y-B, Kim HK, Nishida H, Endo T (2004) Synthesis and characterization of hyperbranched poly(β-ketoester) by the michael addition. Macromol Mater Eng 289(10):923–926

    Article  CAS  Google Scholar 

  42. Trumbo DL (1991) Michael addition polymers from 1,4 and 1,3 benzenedimethanol diacetoacetates and tripropylene glycol diacrylate. Polym Bull 26(3):265–270

    Article  CAS  Google Scholar 

  43. Gao C, Xu Y, Yan D, Chen W (2003) Water-soluble degradable hyperbranched polyesters: novel candidates for drug delivery? Biomacromol 4(3):704–712

    Article  CAS  Google Scholar 

  44. Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ, Cho CS (2005) Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release 105(3):367–380

    Article  CAS  Google Scholar 

  45. Cosulich ME, Russo S, Pasquale S, Mariani A (2000) Performance evaluation of hyperbranched aramids as potential supports for protein immobilization. Polymer 41(13):4951–4956

    Article  CAS  Google Scholar 

  46. Kim YH (1992) Lyotropic liquid crystalline hyperbranched aromatic polyamides. J Am Chem Soc 114(12):4947–4948

    Article  CAS  Google Scholar 

  47. Lee CC (2015) The current trends of optics and photonics, vol 129. Springer Netherlands

    Google Scholar 

  48. Ishida Y, Sun ACF, Jikei M, Kakimoto M (2000) Synthesis of hyperbranched aromatic polyamides starting from dendrons as ABx monomers: effect of monomer multiplicity on the degree of branching. Macromolecules 33(8):2832–2838

    Article  CAS  Google Scholar 

  49. Yamanaka K, Jikei M, Kakimoto MA (2000) Synthesis of hyperbranched aromatic polyimides via polyamic acid methyl ester precursor. Macromolecules 33(4):1111–1114

    Article  CAS  Google Scholar 

  50. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  51. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  CAS  Google Scholar 

  52. Scheel AJ, Komber H, Voit BI (2004) Novel hyperbranched poly([1,2,3]-triazole)s derived from AB2 monomers by a 1,3-dipolar cycloaddition. Macromol Rapid Commun 25(12):1175–1180

    Article  CAS  Google Scholar 

  53. Li ZA, Yu G, Hu P, Ye C, Liu Y, Qin J, Li Z (2009) New azo-chromophore-containing hyperbranched polytriazoles derived from ab2 monomers via click chemistry under copper(I) catalysis. Macromolecules 42(5):1589–1596

    Article  CAS  Google Scholar 

  54. Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 127(46):15998–15999

    Article  CAS  Google Scholar 

  55. van Dijk M, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink WE (2009) Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem 20(11):2001–2016

    Article  CAS  Google Scholar 

  56. Li H, Wang J, Sun JZ, Hu R, Qin A, Tang BZ (2012) Metal-free click polymerization of propiolates and azides: facile synthesis of functional poly(aroxycarbonyltriazole)s. Polym Chem 3(4):1075–1083

    Article  CAS  Google Scholar 

  57. Li H, Wu H, Zhao E, Li J, Sun JZ, Qin A, Tang BZ (2013) Hyperbranched poly(aroxycarbonyltriazole)s: metal-free click polymerization, light refraction, aggregation-induced emission, explosive detection, and fluorescent patterning. Macromolecules 46(10):3907–3914

    Article  CAS  Google Scholar 

  58. Ortega P, Cobaleda BM, Hernandez-Ros JM, Fuentes-Paniagua E, Sanchez-Nieves J, Tarazona MP, Copa-Patino JL, Soliveri J, de la Mata FJ, Gomez R (2011) Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Org Biomol Chem 9(14):5238–5248

    Article  CAS  Google Scholar 

  59. Xue L, Yang Z, Wang D, Wang Y, Zhang J, Feng S (2013) Synthesis and characterization of silicon-containing hyperbranched polymers via thiol-ene click reaction. J Organomet Chem 732:1–7

    Article  CAS  Google Scholar 

  60. Moreno S, Lozano-Cruz T, Ortega P, Tarazona MP, de la Mata FJ, Gómez R (2014) Synthesis of new amphiphilic water-stable hyperbranched polycarbosilane polymers. Polym Int 63(7):1311–1323

    Article  CAS  Google Scholar 

  61. Roy RK, Ramakrishnan S (2011) Thiol-ene clickable hyperscaffolds bearing peripheral allyl groups. J Polym Sci Part APolym Chem 49(8):1735–1744

    Article  CAS  Google Scholar 

  62. Konkolewicz D, Gray-Weale A, Perrier SB (2009) Hyperbranched polymers by thiol-yne chemistry: from small molecules to functional polymers. J Am Chem Soc 131(50):18075–18077

    Article  CAS  Google Scholar 

  63. Cook AB, Barbey R, Burns JA, Perrier S (2016) Hyperbranched polymers with high degrees of branching and low dispersity values: pushing the limits of thiol-yne chemistry. Macromolecules 49(4):1296–1304

    Article  CAS  Google Scholar 

  64. Han J, Zhao B, Tang A, Gao Y, Gao C (2012) Fast and scalable production of hyperbranched polythioether-ynes by a combination of thiol-halogen click-like coupling and thiol-yne click polymerization. Polym Chem 3(7):1918–1925

    Article  CAS  Google Scholar 

  65. Wang D, Zhao T, Zhu X, Yan D, Wang W (2015) Bioapplications of hyperbranched polymers. Chem Soc Rev 44(12):4023–4071

    Article  CAS  Google Scholar 

  66. Lasprilla AJR, Martinez GAR, Hoss B (2011) Synthesis and characterization of poly (lactic acid) for use in biomedical field. Chem Eng 24:985–990

    Google Scholar 

  67. Tasaka F, Ohya Y, Ouchi T (2001) One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol Rapid Commun 22(11):820–824

    Article  CAS  Google Scholar 

  68. Pitet LM, Hait SB, Lanyk TJ, Knauss DM (2007) Linear and branched architectures from the polymerization of lactide with glycidol. Macromolecules 40(7):2327–2334

    Article  CAS  Google Scholar 

  69. Tsujimoto T, Haza Y, Yin Y, Uyama H (2011) Synthesis of branched poly(lactic acid) bearing a castor oil core and its plasticization effect on poly(lactic acid). Polym J 43(4):425–430

    Article  CAS  Google Scholar 

  70. Frey H (2013) Hyperbranched polyglycerols (Synthesis and Applications). In: Encyclopedia of Polymeric Nanomaterials, Springer Berlin Heidelberg: Berlin, Heidelberg, pp 1–4

    Google Scholar 

  71. Wilms D, Stiriba S-E, Frey H (2010) Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc Chem Res 43(1):129–141

    Article  CAS  Google Scholar 

  72. Sunder A, Hanselmann R, Frey H, Mulhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32(13):4240–4246

    Article  CAS  Google Scholar 

  73. Robinson JW, Zhou Y, Bhattacharya P, Erck R, Qu J, Bays JT, Cosimbescu L (2016) Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications. Sci Rep 6:18624

    Article  CAS  Google Scholar 

  74. Khemchandani B, Verma HS (2012) High performance shear stable viscosity modifiers. In: Polymer processing and characterization, Apple Academic Press, pp 33–41

    Google Scholar 

  75. Stohr T, Eisenberg B, Muller M (2008) A new generation of high performance viscosity modifiers based on comb polymers. SAE Int J Fuels Lubr 1(1):1511–1516

    Article  Google Scholar 

  76. Lee S, Saito K, Lee HR, Lee MJ, Shibasaki Y, Oishi Y, Kim BS (2012) Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromol 13(4):1190–1196

    Article  CAS  Google Scholar 

  77. Garamus VM, Maksimova TV, Kautz H, Barriau E, Frey H, Schlotterbeck U, Mecking S, Richtering W (2004) Hyperbranched polymers: structure of hyperbranched polyglycerol and amphiphilic poly(glycerol ester)s in dilute aqueous and nonaqueous solution. Macromolecules 37(22):8394–8399

    Article  CAS  Google Scholar 

  78. Parzuchowski PG, Grabowska M, Jaroch M, Kusznerczuk M (2009) Synthesis and characterization of hyperbranched polyesters from glycerol-based AB2 monomer. J Polym Sci A Polym Chem 47(15):3860–3868

    Article  CAS  Google Scholar 

  79. Parzuchowski PG, Jaroch M, Tryznowski M, Rokicki G (2008) Synthesis of new glycerol-based hyperbranched polycarbonates. Macromolecules 41(11):3859–3865

    Article  CAS  Google Scholar 

  80. Testud B, Pintori D, Grau E, Taton D, Cramail H (2017) Hyperbranched polyesters by polycondensation of fatty acid-based ABn-type monomers. Green Chem 19(1):259–269

    Article  CAS  Google Scholar 

  81. Brenner AR, Voit BI, Massa DJ, Turner SR (1996) Hyperbranched polyesters: End group modification and properties. Macromol Symp 102(1):47–54

    Article  CAS  Google Scholar 

  82. Ghosh A, Banerjee S, Voit B (2015) Aromatic hyperbranched polymers: synthesis and application. In: Long TE, Voit B, Okay O (eds) Porous carbons- hyperbranched polymers- polymer solvation. Springer International Publishing, Cham, pp 27–124

    Google Scholar 

  83. Hult A, Johansson M, Malmstrom E (1999) Hyperbranched Polymers. In: Roovers J (ed) Branched polymers II. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 1–34

    Google Scholar 

  84. Zhang X (2010) Hyperbranched aromatic polyesters: From synthesis to applications. Prog Org Coat 69(4):295–309

    Article  CAS  Google Scholar 

  85. Kricheldorf HR, Zang Q-Z, Schwarz G (1982) New polymer syntheses: 6. Linear and branched poly(3-hydroxy-benzoates). Polymer 23(12):1821–1829

    Article  CAS  Google Scholar 

  86. Turner SR, Voit BI, Mourey TH (1993) All-aromatic hyperbranched polyesters with phenol and acetate end groups: synthesis and characterization. Macromolecules 26(17):4617–4623

    Article  CAS  Google Scholar 

  87. Fomine S, Rivera E, Fomina L, Ortiz A, Ogawa T (1998) Polymers from coumarines: 4. Design and synthesis of novel hyperbranched and comb-like coumarin-containing polymers. Polymer 39(15):3551–3558

    Article  CAS  Google Scholar 

  88. Kricheldorf HR, Stukenbrock T (1998) New polymer syntheses XCIII. Hyperbranched homo- and copolyesters derived from gallic acid and β-(4-hydroxyphenyl)-propionic acid. J Polym Sci APolym Chem 36(13):2347–2357

    Article  CAS  Google Scholar 

  89. Qiu T, Tang L, Tuo X, Zhang X, Liu D (2001) Study on self-assembly properties of aryl-alkyl hyperbranched polyesters with carboxylic end groups. Polym Bull 47(3):337–342

    Article  CAS  Google Scholar 

  90. Jikei M, Kakimoto MA (2001) Hyperbranched polymers: a promising new class of materials. Prog. Polym. Sci. 26(8):1233–1285

    Article  CAS  Google Scholar 

  91. Erber M, Boye S, Hartmann T, Voit BI, Lederer A (2009) A convenient room temperature polycondensation toward hyperbranched AB2-type all-aromatic polyesters with phenol terminal groups. J Polym Sci Polym Chem 47(19):5158–5168

    Article  CAS  Google Scholar 

  92. Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101(7):2097–2124

    Article  CAS  Google Scholar 

  93. Uyama H, Kobayashi S (2002) Enzyme-catalyzed polymerization to functional polymers. J Mol Catal B Enzym 19–20:117–127

    Article  Google Scholar 

  94. Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. In: Kobayashi S, Ritter H, Kaplan D (eds) Enzyme-catalyzed synthesis of polymers. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 1–49

    Google Scholar 

  95. Skaria S, Smet M, Frey H (2002) Enzyme-catalyzed synthesis of hyperbranched aliphatic polyesters. Macromol Rapid Commun 23(4):292–296

    Article  CAS  Google Scholar 

  96. Lopez-Luna A, Gallegos JL, Gimeno M, Vivaldo-Lima E, Barzana E (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67(1–2):143–149

    Article  CAS  Google Scholar 

  97. Mena M, Lopez-Luna A, Shirai K, Tecante A, Gimeno M, Barzana E (2013) Lipase-catalyzed synthesis of hyperbranched poly-l-lactide in an ionic liquid. Bioproc Biosyst Eng 36(3):383–387

    Article  CAS  Google Scholar 

  98. Xu F, Zhong J, Qian X, Li Y, Lin X, Wu Q (2013) Multifunctional poly(amine-ester)-type hyperbranched polymers: lipase-catalyzed green synthesis, characterization, biocompatibility, drug loading and anticancer activity. Polym Chem 4(12):3480–3490

    Article  CAS  Google Scholar 

  99. Kricheldorf H (2013) Hyperbranched polymers by a2 + bn polycondensation. In: Polycondensation: history and new results. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 147–159

    Google Scholar 

  100. Aharoni SM, Edwards SF (1989) Gels of rigid polyamide networks. Macromolecules 22(8):3361–3374

    Article  CAS  Google Scholar 

  101. Aharoni SM (1991) Gels of two-step rigid polyamide networks. Macromolecules 24(15):4286–4294

    Article  CAS  Google Scholar 

  102. Jikei M, Chon SH, Kakimoto MA, Kawauchi S, Imase T, Watanebe J (1999) Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules 32(6):2061–2064

    Article  CAS  Google Scholar 

  103. Fang J, Kita H, Okamoto KI (2000) Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization. Macromolecules 33(13):4639–4646

    Article  CAS  Google Scholar 

  104. Hao J, Jikei M, Kakimoto MA (2002) Preparation of hyperbranched aromatic polyimides via A2 + B3 Approach. Macromolecules 35(14):5372–5381

    Article  CAS  Google Scholar 

  105. Unal S, Long TE (2006) Highly Branched Poly(ether ester)s via cyclization-free melt condensation of A2 oligomers and B3 monomers. Macromolecules 39(8):2788–2793

    Article  CAS  Google Scholar 

  106. Scheel A, Komber H, Voit B (2004) Hyperbranched thermolabile polycarbonates derived from a A2 + B3 monomer system. Macromol Symp 210(1):101–110

    Article  CAS  Google Scholar 

  107. Miyasaka M, Takazoe T, Kudo H, Nishikubo T (2010) Synthesis of hyperbranched polycarbonate by novel polymerization of di-tert-butyl tricarbonate with 1,1,1-tris(4-hydroxyphenyl)ethane. Polym J 42(11):852–859

    Article  CAS  Google Scholar 

  108. Wang Q, Shi W (2006) Synthesis and thermal decomposition of a novel hyperbranched polyphosphate ester used for flame retardant systems. Polym Degrad Stab 91(6):1289–1294

    Article  CAS  Google Scholar 

  109. Liu J, Huang W, Pang Y, Yan D (2015) Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications. Chem Soc Rev 44(12):3942–3953

    Article  CAS  Google Scholar 

  110. Xie J, Hu L, Shi W, Deng X, Cao Z, Shen Q (2008) Synthesis and characterization of hyperbranched polytriazole via an ‘A2 + B3’ approach based on click chemistry. Polym Int 57(8):965–974

    Article  CAS  Google Scholar 

  111. Qin A, Lam JWY, Jim CKW, Zhang L, Yan J, Haussler M, Liu J, Dong Y, Liang D, Chen E, Jia G, Tang BZ (2008) Hyperbranched Polytriazoles: click polymerization, regioisomeric structure, light emission, and fluorescent patterning. Macromolecules 41(11):3808–3822

    Article  CAS  Google Scholar 

  112. Chen H, Jia J, Duan X, Yang Z, Kong J (2015) Reduction-cleavable hyperbranched polymers with limited intramolecular cyclization via click chemistry. J Polym Sci A Polym Chem 53(20):2374–2380

    Article  CAS  Google Scholar 

  113. Tapan K, Thirumoolan D, Mohanram R, Vetrivel K, Basha KA (2015) Antimicrobial activity of hyperbranched polymers: synthesis, characterization, and activity assay study. J Bioact Compat Polym 30(2):145–156

    Article  CAS  Google Scholar 

  114. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29(3):183–275

    Article  CAS  Google Scholar 

  115. Gao C, Yan D (2011) Synthesis of Hyperbranched polymers via polymerization of asymmetric monomer pairs. In: Hyperbranched Polymers, John Wiley & Sons, Inc. pp 107–138

    Google Scholar 

  116. Shi Y, Graff RW, Gao H (2015) Recent progress on synthesis of hyperbranched polymers with controlled molecular weight distribution. In: Controlled Radical Polymerization: Materials, American Chemical Society, vol. 1188, pp 135–147

    Google Scholar 

  117. Feast WJ, Stainton NM (1995) Synthesis, structure and properties of some hyperbranched polyesters. J Mater Chem 5(3):405–411

    Article  CAS  Google Scholar 

  118. Bharathi P, Moore JS (2000) Controlled synthesis of hyperbranched polymers by slow monomer addition to a core. Macromolecules 33(9):3212–3218

    Article  CAS  Google Scholar 

  119. Yan D, Zhou Z (1999) Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB2 type monomers in the presence of multifunctional core moieties. Macromolecules 32(3):819–824

    Article  CAS  Google Scholar 

  120. Radke W, Litvinenko G, Muller AHE (1998) Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules 31(2):239–248

    Article  CAS  Google Scholar 

  121. Satoh T (2012) Synthesis of hyperbranched polymer using slow monomer addition method. Int J Polym Sci p 8

    Google Scholar 

  122. Chen JY, Smet M, Zhang JC, Shao WK, Li X, Zhang K, Fu Y, Jiao YH, Sun T, Dehaen W, Liu FC, Han EH (2014) Fully branched hyperbranched polymers with a focal point: analogous to dendrimers. Polym Chem 5(7):2401–2410

    Article  CAS  Google Scholar 

  123. Schull C, Frey H (2013) Grafting of hyperbranched polymers: from unusual complex polymer topologies to multivalent surface functionalization. Polymer 54(21):5443–5455

    Article  CAS  Google Scholar 

  124. Schull C, Rabbel H, Schmid F, Frey H (2013) Polydispersity and molecular weight distribution of hyperbranched graft copolymers via “hypergrafting” of abm monomers from polydisperse macroinitiator cores: theory meets synthesis. Macromolecules 46(15):5823–5830

    Article  CAS  Google Scholar 

  125. Popeney CS, Lukowiak MC, Bottcher C, Schade B, Welker P, Mangoldt D, Gunkel G, Guan Z, Haag R (2012) Tandem coordination, ring-opening, hyperbranched polymerization for the synthesis of water-soluble core-shell unimolecular transporters. ACS Macro Lett 1(5):564–567

    Article  CAS  Google Scholar 

  126. Bharathi P, Moore JS (1997) Solid-Supported Hyperbranched Polymerization: Evidence for Self-Limited Growth. J Am Chem Soc 119(14):3391–3392

    Article  CAS  Google Scholar 

  127. Zhou Z, Jia Z, Yan D (2012) Kinetic analysis of AB2 polycondensation in the presence of multifunctional cores with various reactivities. Polymer 53(15):3386–3391

    Article  CAS  Google Scholar 

  128. Bernal DP, Bedrossian L, Collins K, Fossum E (2003) Effect of core reactivity on the molecular weight, polydispersity, and degree of branching of hyperbranched poly(arylene ether phosphine oxide)s. Macromolecules 36(2):333–338

    Article  CAS  Google Scholar 

  129. Roy RK, Ramakrishnan S (2011) Control of molecular weight and polydispersity of hyperbranched polymers using a reactive B3 core: a single-step route to orthogonally functionalizable hyperbranched polymers. Macromolecules 44(21):8398–8406

    Article  CAS  Google Scholar 

  130. Suzuki M, Ii A, Saegusa T (1992) Multibranching polymerization: palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 25(25):7071–7072

    Article  CAS  Google Scholar 

  131. Suzuki M, Yoshida S, Shiraga K, Saegusa T (1998) New ring-opening polymerization via a π-allylpalladium complex. 5. multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 31(6):1716–1719

    Article  CAS  Google Scholar 

  132. Ohta Y, Fujii S, Yokoyama A, Furuyama T, Uchiyama M, Yokozawa T (2009) Synthesis of well-defined hyperbranched polyamides by condensation polymerization of AB2 monomer through changed substituent effects. Angew Chem Int Ed 48(32):5942–5945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamalika Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Das, T., Sengupta, S., Bandyopadhyay, A. (2018). Part I—Synthesis of Hyperbranched Polymers: Step-Growth Methods. In: Hyperbranched Polymers for Biomedical Applications . Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6514-9_2

Download citation

Publish with us

Policies and ethics