Skip to main content
Log in

Morphology control for tunable optical properties of cellulose nanofibrils films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Flexible cellulose nanofibrils film substrates with high smooth surface and high transparency are attractive for next- generation flexible transparent electrical device applications. In recent years, tuning optical properties of the substrates has become more and more important for the fabrication of the transparent electronic devices. In this study, a simple depositing process with micro-scale TEMPO-oxidized wood fibers was utilized to tune top surface morphology of the cellulose nanofibrils films. The influence of the surface morphology on the optical properties was also investigated. As the upper surface roughness increased, the optical haze of the transparent films increased. The obtained films, with total transmittance ranged from 83% to 88%, exhibited relatively low haze of 3.8% to high haze of 62.3%. In addition, the lower surface of cellulose nanofibrils films has a super flat surface, which is required for applications in electronics and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Bai S, Sun C, Wan P, Wang C, Luo R, Li Y, Liu J, Sun X (2015) Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small 11:306–310

    Article  CAS  PubMed  Google Scholar 

  • Chung HH, Lu S (2003) Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications. J Soc Inf Display 11:237–242

    Article  Google Scholar 

  • Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197

    Article  CAS  Google Scholar 

  • Fitz-Gerald J, Piqué A, Chrisey D, Rack P, Zeleznik M, Auyeung R, Lakeou S (2000) Laser direct writing of phosphor screens for high-definition displays. Appl Phys Lett 76:1386–1388

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Geometries B, Abrasion S (2012) Standard test method for haze and luminous transmittance of transparent plastics. ASTM Int 1:1–7

    Google Scholar 

  • Guo F, Azimi H, Hou Y, Przybilla T, Hu M, Bronnbauer C, Langner S, Spiecker E, Forberich K, Brabec CJ (2015) High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7:1642–1649

    Article  CAS  PubMed  Google Scholar 

  • Hassinen T, Eiroma K, Mäkelä T, Ermolov V (2015) Printed pressure sensor matrix with organic field-effect transistors. Sensor Actuat A Phys 236:343–348

    Article  CAS  Google Scholar 

  • Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154

    Article  CAS  PubMed  Google Scholar 

  • Hsieh M-C, Koga H, Suganuma K, Nogi M (2017) Hazy transparent cellulose nanopaper. Sci Rep-UK 7:41590

    Article  CAS  Google Scholar 

  • Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518

    Article  CAS  Google Scholar 

  • Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    Article  CAS  PubMed  Google Scholar 

  • Hui Z, Liu Y, Guo W, Li L, Mu N, Jin C, Zhu Y, Peng P (2017) Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature. Nanotechnology 28:285703

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Jung S, Jeong S, Kim G, Lee K (2015) Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun 6:6503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-H, Kim Y-S, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA (2009) Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett 95:133701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K (2015) Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv Mater 27:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Mater 6:e93

    Article  CAS  Google Scholar 

  • Leppaniemi J, Eiroma K, Majumdar H, Alastalo A (2017) Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl Mater Inter 9:8774–8782

    Article  CAS  Google Scholar 

  • Madaria AR, Kumar A, Zhou C (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22:245201

    Article  CAS  PubMed  Google Scholar 

  • Mecking S (2004) Nature or petrochemistry—biologically degradable materials. Angew Chem Int Edit 43:1078–1085

    Article  CAS  Google Scholar 

  • Miettunen K, Halme J, Vahermaa P, Saukkonen T, Toivola M, Lund P (2009) Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers. J Electrochem Soc 156:B876–B883

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2010) Optically Transparent Nanofiber Paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Wu Y, Zhu J, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102

    Article  CAS  Google Scholar 

  • Roth B, Dos RB, Gisele A, Corazza M (2015) The critical choice of PEDOT:PSS additives for long term stability of roll-to-roll processed OPVs. Adv Energy Mater 5:1401912

    Article  CAS  Google Scholar 

  • Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2014) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  • Su Y, Zhao Y, Zhang H, Feng X, Shi LY, Fang J (2016) Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J Mater Chem C 5:573–581

    Article  CAS  Google Scholar 

  • Yan Q, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102

    Article  CAS  Google Scholar 

  • Yang W, Jiao L, Min D, Liu Z, Dai H (2017) Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv 7:10463–10468

    Article  CAS  Google Scholar 

  • Yao W, Bae K-J, Jung MY, Cho Y-R (2017) Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate. J Colloid Interface Sci 506:429–436

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2013a) Transparent paper: Fabrications, properties, and device applications. Energy Environ Sci 7:269–287

    Article  Google Scholar 

  • Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013b) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013c) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6:2105–2111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Weisheng Yang is grateful for support received from the Introduction of Advanced International Project of Forestry Science and Technology (Grant Number: 2015454), the National Natural Science Foundation of China (Grant Number: 31470599), the Doctorate Fellowship Foundation of Nanjing Forestry University. and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqi Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Jiao, L., Liu, W. et al. Morphology control for tunable optical properties of cellulose nanofibrils films. Cellulose 25, 5909–5918 (2018). https://doi.org/10.1007/s10570-018-1974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1974-1

Keywords

Navigation