Skip to main content
Log in

Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

An integrated biorefinery process is proposed here for the enzymatic production of cellulose nanofiber (CNF) and sugars in a stirred-tank reactor using eucalyptus cellulose pulp as feedstock. Process engineering variables required for scale-up such as impeller speed, power consumption, and rheological behavior were determined under different experimental conditions of solids loading (10 and 15% w/v) and enzyme dosage (5 and 10 mg/g). Based on the mixing time, an impeller speed rotation of 470 rpm was selected for provision of adequate homogenization of the medium. Total energy consumption ranged from 161 to 207 W h and showed that significantly lower power consumption could be achieved using 10 mg/g enzyme loading with 10% w/v solids. Evaluation of rheological behavior showed that transition to a turbulent flow regime during the enzymatic hydrolysis reaction resulted in a constant power number ranging from 2.06 to 2.51, which was also lower for 10 mg/g enzyme loading with 10% w/v solids. Integrated analysis of glucose released and CNF generated after enzymatic hydrolysis showed that glucose values varied from 42.0 to 90.6 g/L, corresponding to cellulose conversion ranging from 57.2 to 76.4%. These values are suitable for the microbial fermentation of sugars into biofuels, while leaving a useful amount of residual nanomaterial. The residual solids of the enzymatic reactions presented the characteristics of CNF, as shown by X-ray diffraction (XRD) analyses, with crystallinity index (CI) values of 72–81%, as well as by morphological analysis using field emission scanning electron microscopy (FEG-SEM), which revealed diameters in the range 18–31 nm, making this nanomaterial suitable for use in a wide range of industrial applications. The findings indicated the potential of using conventional stirred-tank reactors for enzymatic hydrolysis for the integrated production of CNF and glucose, hence contributing to the implementation of future large-scale biorefineries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Ascanio G, Castro B, Galindo E (2004) Measurement of power consumption in stirred vessels—a review. Chem Eng Res Des 82:1282–1290

    Article  CAS  Google Scholar 

  • Badino AC, Barboza M, Hokka CO (1994) Power input and oxygen transfer in fed-batch penicilin production process. Adv Bioprocess Eng 157–162

  • Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33:1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sustain Energy Rev 70:793–804

    Article  CAS  Google Scholar 

  • Buffo MM, Corrêa LJ, Esperanca MN, Cruz AJG, Farinas CS, Badino AC (2016) Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem Eng J 114:133–142

    Article  CAS  Google Scholar 

  • Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906

    Article  CAS  Google Scholar 

  • Campos A, Correa AC, Cannella D, Teixeira EdeM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Article  CAS  Google Scholar 

  • Cannella D, Jorgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111:59–68

    Article  CAS  PubMed  Google Scholar 

  • Corrêa LJ, Badino AC, Cruz AJG (2016a) Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration. Bioprocess Biosyst Eng 39:285–294

    Article  CAS  PubMed  Google Scholar 

  • Corrêa LJ, Badino AC, Cruz AJG (2016b) Power consumption evaluation of different fed-batch strategies for enzymatic hydrolysis of sugarcane bagasse. Bioprocess Biosyst Eng 39:825–833

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352

    Article  CAS  Google Scholar 

  • Dasari RK, Dunaway K, Berson RE (2009) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23:492–497

    Article  CAS  Google Scholar 

  • de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  • Du J, Zhang F, Li Y, Zhang H, Liang J, Zheng H, Huang H (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37:173–181

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Duran N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Mesurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Himmelsbach W, Houlton D, Keller W, Lovallo M (2006) Mixing systems: design and scale up (cover story). Chemical Engineering -New York- Mcgraw Hill Incorporated then Chemical Week Publishing Llc. pp 46–53

  • Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H, Pinelo M (2017) Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 11:150–167

    Article  CAS  Google Scholar 

  • Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428

    Article  CAS  Google Scholar 

  • Knutsen JS, Liberatore MW (2009) Rheology of high-solids biomass slurries for biorefinery applications. J Rheol 53:877–892

    Article  CAS  Google Scholar 

  • Kordas M, Story G, Konopacki M, Rakoczy R (2013) Study of mixing time in a liquid vessel with rotating and reciprocating agitator. Ind Eng Chem Res 52:13818–13828

    Article  CAS  Google Scholar 

  • Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • McCabe WL, Smith JC, Harriout P (2005) Unit operations of chemical engineering, 7a ed. New York

  • Metzner AB, Otto RE (1957) Agitation of non-newtonian fluids. AIChE J 3:3–10

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35:146–152

    Article  CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist B, Wiman M, Liden G (2011) Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol Biofuels 4:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist B, Kadic A, Hagglund K, Petersson A, Liden G (2016) Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions. Biomass Convers Biorefin 6:173–180

    Article  CAS  Google Scholar 

  • Pereira SC, Maehara L, Monteiro Machado CM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pino MS, Rodríguez-Jasso RM, Michelin M, Flores-Gallegos AC, Morales-Rodriguez R, Teixeira JA, Ruiz HA (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem Eng J 347:119–136

    Article  CAS  Google Scholar 

  • Sanchez Perez JA, Rodriguez Porcel EM, Casas Lopez JL, Fernandez Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Maartin AE, Conrad CM (1959) An empirical method for estimating the degree of cristallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. NREL—National Renewable Energy Laboratory

  • Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Int Appl Biochem Biotechnol 175:1817–1842

    Article  CAS  Google Scholar 

  • Szoplik J, Karcz J (2008) Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chem Pap 62:70–77

    Article  CAS  Google Scholar 

  • Tan RK, Eberhard W, Buechs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci 66:440–447

    Article  CAS  Google Scholar 

  • Teixeira RSS, da Silva ASA, Jang JH, Kim HW, Ishikawa K, Endo T, Lee SH, Bon EPS (2015) Combining biomass wet disk milling and endoglucanase/beta-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81

    Article  CAS  PubMed  Google Scholar 

  • Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour Technol 100:925–934

    Article  CAS  PubMed  Google Scholar 

  • Visanko M, Sirvio JA, Piltonen P, Sliz R, Liimatainen H, Illikainen M (2017) Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24:4173–4187

    Article  CAS  Google Scholar 

  • Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643

    Article  CAS  Google Scholar 

  • Wang QQ, Wei W, Chang FX, Sun JZ, Xie SQ, Zhu QQ (2016) Controlling the size and film strength of individualized cellulose nanofibrils prepared by combined enzymatic pretreatment and high pressure microfluidization. BioResources 11:2536–2547

    CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Qin W, Paice MG, Saddler JN (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100:5890–5897

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:339–1344

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Embrapa, MCTI/SISNANO, CNPq, CAPES, and FAPESP (Grant #2016/10636-8) (all from Brazil) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane S. Farinas.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest concerning the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondancia, T.J., Corrêa, L.J., Cruz, A.J.G. et al. Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior. Cellulose 25, 4499–4511 (2018). https://doi.org/10.1007/s10570-018-1876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1876-2

Keywords

Navigation