Skip to main content
Log in

Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose-based film has a poor water vapor barrier property, which limits its applications in food packaging. The hydrophobic modification of cellulose materials has attracted increasing interests. In this work, UV curable polyfluoro resin was incorporated into the cellulose matrix for superhydrophobic modification of the cellulose matrix. Results showed that the loaded polyfluoro resin had an obvious influence on the composites’ microstructure, the thermal stability of the composites changed slightly with the incorporation of polyfluoro resin, and the transmittance of the composites containing the resin with high content of 14.68% could be kept to 50% at 550 nm wavelength. Furthermore, the surface properties of the composites could be changed from hydrophobic to superhydrophobic by increasing the polyfluoro resin content. Moreover, UV-initiated polymerization was used to modify the cellulose matrix, the process was green and facile, which showing potential for cellulose matrix modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas R, Khereby M, Sadik W, El Demerdash A (2015) Fabrication of durable and cost effective superhydrophobic cotton textiles via simple one step process. Cellulose 22(1):887–896

    Article  CAS  Google Scholar 

  • Althues H, Henle A, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36(9):1454–1465

    Article  CAS  Google Scholar 

  • Ayadi F, Bayer IS, Fragouli D, Liakos I, Cingolani R, Athanassiou A (2013) Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment. Cellulose 20:1501–1509

    Article  CAS  Google Scholar 

  • Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439

    Article  CAS  Google Scholar 

  • da Silva R, Sierakowski MR, Bassani HP, Zawadzki SF, Pirich CL, Ono L, de Freitas RA (2016) Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft. Int J Biol Macromol 86:599–605

    Article  Google Scholar 

  • Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  • Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Ind Crops Prod 95:574–582

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • He M, Xu M, Zhang L (2013) Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface. ACS Appl Mater Interfaces 5:585–591

    Article  CAS  Google Scholar 

  • Hu Z, Berry RM, Pelton R, Cranston ED (2017) One-pot water-based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols. ACS Sustain Chem Eng 5(6):5018–5026

    Article  CAS  Google Scholar 

  • Li W, Wu Y, Liang W, Li B, Liu S (2014) Reduction of the water wettability of cellulose film through controlled heterogeneous modification. ACS Appl Mater Interfaces 6(8):5726–5734

    Article  CAS  Google Scholar 

  • Li W, Luo X, Song R, Zhu Y, Li B, Liu S (2016) Porous cellulose microgel particle: a fascinating host for the encapsulation, protection, and delivery of lactobacillus plantarum. J Agric Food Chem 64(17):3430–3436

    Article  CAS  Google Scholar 

  • Li W, Zhu Y, Ye F, Li B, Luo X, Liu S (2017) Probiotics in cellulose houses: enhanced viability and targeted delivery of Lactobacillus plantarum. Food Hydrocoll 62:66–72

    Article  CAS  Google Scholar 

  • Liji Sobhana S, Zhang X, Kesavan L, Liias P, Fardim P (2017) Layered double hydroxide interfaced stearic acid—Cellulose fibres: a new class of super-hydrophobic hybrid materials. Colloids Surf A Physicochem Eng Asp 522:416–424

    Article  Google Scholar 

  • Miao C, Hamad W (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  • Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219

    Article  CAS  Google Scholar 

  • Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186

    Article  CAS  Google Scholar 

  • Omura T, Imagawa K, Kono K, Suzuki T, Minami H (2016) Encapsulation of either hydrophilic or hydrophobic substances in spongy cellulose particles. ACS Appl Mater Interfaces 9(1):944–949

    Article  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23(1):93–123

    Article  CAS  Google Scholar 

  • Pan Y, Xiao H, Song Z (2013) Hydrophobic modification of cellulose fibres by cationicmodified polyacrylate latex with core–shell structure. Cellulose 20:485–494

    Article  CAS  Google Scholar 

  • Rull-Barrull J, d’Halluin M, Le Grognec E, Felpin F-X (2016) Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chem Commun 52(12):2525–2528

    Article  CAS  Google Scholar 

  • Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun 7:13902

    Article  CAS  Google Scholar 

  • Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23(3):1925–1938

    Article  CAS  Google Scholar 

  • Suhas V, Carrott P, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent: biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies. Bioresour Technol 216:1066–1076

    Article  CAS  Google Scholar 

  • Tang CY, Liu HQ (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos Part A 39(10):1638–1643

    Article  Google Scholar 

  • Torres S, Navia R, Campbell Murdy R, Cooke P, Misra M, Mohanty AK (2015) Green composites from residual microalgae biomass and poly (butylene adipate-co-terephthalate): processing and plasticization. ACS Sustain Chem Eng 3(4):614–624

    Article  CAS  Google Scholar 

  • Wang X, Xu S, Tan Y, Du J, Wang J (2016) Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil–water separation. Carbohydr Polym 140:188–194

    Article  CAS  Google Scholar 

  • Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256

    Article  CAS  Google Scholar 

  • Yang Q, Saito T, Isogai A (2012) Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties. Cellulose 19:1913–1921

    Article  CAS  Google Scholar 

  • Zhao M, Kuga S, Wu M, Huang Y (2016) Hydrophobic nanocoating of cellulose by solventless mechanical milling. Green Chem 18(10):3006–3012

    Article  CAS  Google Scholar 

  • Zhu Y, Luo X, Wu X, Li W, Li B, Lu A, Liu S (2017) Cellulose gel dispersions: fascinating green particles for the stabilization of oil/water Pickering emulsion. Cellulose 24(1):207–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wuhan Youth Science and Technology Plan (2016070204010096) and National Science-Technology Support Plan Projects (No. 2015BAD16B06), and the fund of the Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), and Jiangsu Province Biomass Energy and Materials Laboratory (JSBEM201606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Qian, Z., Lei, Y. et al. Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ. Cellulose 25, 1617–1623 (2018). https://doi.org/10.1007/s10570-018-1676-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1676-8

Keywords

Navigation