Skip to main content
Log in

Comparison of polyethylene glycol adsorption to nanocellulose versus fumed silica in water

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The recent intensification of industrially produced cellulose nanocrystals (CNCs) and cellulose nanofibrils has positioned nanocelluloses as promising materials for many water-based products and applications. However, for nanocelluloses to move beyond solely an academic interest, a thorough understanding of their interaction with water-soluble polymers is needed. In this work, we address a conflicting trend in literature that suggests polyethylene glycol (PEG) adsorbs to CNC surfaces by comparing the adsorption behaviour of PEG with CNCs versus fumed silica. While PEG is known to have strong hydrogen bonding tendencies and holds water tightly, it is sometimes (we believe erroneously) presumed that PEG binds to cellulose through hydrogen bonding in aqueous media. To test this assumption, the adsorption of PEG to CNCs and fumed silica (both in the form of particle films and in aqueous dispersions) was examined using quartz crystal microbalance with dissipation, isothermal titration calorimetry, rheology and dynamic light scattering. For all PEG molecular weights (300–10,000 g/mol) and concentrations (100–10,000 ppm) tested, strong rapid adsorption was found with fumed silica, whereas no adsorption to CNCs was observed. We conclude that unlike silanols, the hydroxyl groups on the surface of CNCs do not readily hydrogen bond with the ether oxygen in the PEG backbone. As such, this work along with previous papermaking literature supports the opinion that PEG does not adsorb to cellulose surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggebrandt LG, Samuelson O (1964) Penetration of water-soluble polymers into cellulose fibers. J Appl Polym Sci 8:2801–2812. doi:10.1002/app.1964.070080625

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. doi:10.1021/la001070m

    Article  CAS  Google Scholar 

  • Aulin C, Varga I, Claesson PM et al (2008) Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. Langmuir 24:2509–2518. doi:10.1021/la7032884

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer (Guildf) 45:4149–4157. doi:10.1016/j.polymer.2004.03.094

    Article  CAS  Google Scholar 

  • Bardet R, Belgacem N, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018. doi:10.1021/am506786t

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494. doi:10.1021/bm300191k

    Article  CAS  Google Scholar 

  • Ben Azouz K, Ramires EC, Van den Fonteyne W et al (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240. doi:10.1021/mz2001737

    Article  CAS  Google Scholar 

  • Benselfelt T, Cranston ED, Ondaral S et al (2016) Adsorption of xyloglucan onto cellulose surfaces of different morphologies: an entropy-driven process. Biomacromol 17:2801–2811. doi:10.1021/acs.biomac.6b00561

    Article  CAS  Google Scholar 

  • Bhattacharyya L, Rohrer JS (eds) (2012) Applications of ion chromatography for pharmaceutical and biological products. Wiley, Hoboken

    Google Scholar 

  • Biermann CJ (1996) Stock preparation and additives for papermaking. In: Handbook of pulping and papermaking, 2nd edn. Elsevier/Academic Press, London, pp 190–208. doi:10.1016/B978-012097362-0/50012-1

  • Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123. doi:10.1021/la2035449

    Article  CAS  Google Scholar 

  • Bouchard J, Méthot M, Fraschini C, Beck S (2016) Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23:3555–3567. doi:10.1007/s10570-016-1036-5

    Article  CAS  Google Scholar 

  • Cabot Corporation (2016) Hydrophilic Fumed Silica. http://www.cabotcorp.com/solutions/products-plus/fumed-metal-oxides/hydrophilic. Accessed 11 Oct 2016

  • Cao Y, Zavaterri P, Youngblood J et al (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56:73–83. doi:10.1016/j.cemconcomp.2014.11.008

    Article  CAS  Google Scholar 

  • Changsarn S, Mendez JD, Shanmuganathan K et al (2011) Biologically inspired hierarchical design of nanocomposites based on poly(ethylene oxide) and cellulose nanofibers. Macromol Rapid Commun 32:1367–1372. doi:10.1002/marc.201100183

    Article  CAS  Google Scholar 

  • Cheng D, Wen Y, Wang L et al (2015) Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohydr Polym 123:157–163. doi:10.1016/j.carbpol.2015.01.035

    Article  CAS  Google Scholar 

  • Chiad K, Stelzig SH, Gropeanu R et al (2009) Isothermal titration calorimetry: a powerful technique to quantify interactions in polymer hybrid systems. Macromolecules 42:7545–7552. doi:10.1021/ma9008912

    Article  CAS  Google Scholar 

  • de Cuadro P, Belt T, Kontturi KS et al (2015) Cross-linking of cellulose and poly(ethylene glycol) with citric acid. React Funct Polym 90:21–24. doi:10.1016/j.reactfunctpolym.2015.03.007

    Article  CAS  Google Scholar 

  • De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal–poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromol 17:649–660. doi:10.1021/acs.biomac.5b01598

    Article  CAS  Google Scholar 

  • Devanand K, Selser JC (1991) Asymptotic behavior and long-range interactions in aqueous solutions of poly (ethylene oxide). Macromolecules 24:5943–5947. doi:10.1021/ma00022a008

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082. doi:10.1021/la950133b

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2002) Influence of dextran on the phase behavior of suspensions of cellulose nanocrystals. Macromolecules 35:7400–7406. doi:10.1021/ma0204195

    Article  CAS  Google Scholar 

  • Eisenlauer J, Killmann E, Korn M (1980) Stability of colloidal silica (aerosil) hydrosols. II. Influence of the pH value and the adsorption of polyethylene glycols. J Colloid Interface Sci 74:120–135. doi:10.1016/0021-9797(80)90176-9

    Article  CAS  Google Scholar 

  • Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. BioResources 6:4200–4217

    CAS  Google Scholar 

  • Esumi K, Iitaka M, Koide Y (1998) Simultaneous adsorption of poly(ethylene oxide) and cationic surfactant at the silica/water interface. J Colloid Interface Sci 208:178–182. doi:10.1006/jcis.1998.5819

    Article  CAS  Google Scholar 

  • Esumi K, Nakaie Y, Sakai K, Torigoe K (2001) Adsorption of poly(ethyleneglycol) and poly(amidoamine)dendrimer from their mixtures on alumina/water and silica/water interfaces. Colloids Surfaces A Physicochem Eng Asp 194:7–12. doi:10.1016/S0927-7757(00)00788-3

    Article  CAS  Google Scholar 

  • Fleer GJ, Cohen Stuart MA, Scheutjens JMHM et al (1998) Polymers at interfaces. Chapman & Hall, Illistrate

    Book  Google Scholar 

  • Gårdebjer S, Andersson M, Engström J et al (2016) Using ansen solubility parameters to predict the dispersion of nano-particles in polymeric films. Polym Chem 7:1756–1764. doi:10.1039/C5PY01935D

    Article  CAS  Google Scholar 

  • Gray DG, Mu X (2015) Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials (Basel) 8:7873–7888. doi:10.3390/ma8115427

    Article  Google Scholar 

  • Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45. doi:10.1016/j.cocis.2017.01.005

    Article  CAS  Google Scholar 

  • Gustafsson E, Pelton R, Wågberg L (2016) Rapid development of wet adhesion between carboxymethylcellulose modified cellulose surfaces laminated with polyvinylamine adhesive. ACS Appl Mater Interfaces 8:24161–24167. doi:10.1021/acsami.6b05673

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hasanzadeh M, Mottaghitalab V, Rezaei M (2015) Rheological and viscoelastic behavior of concentrated colloidal suspensions of silica nanoparticles: a response surface methodology approach. Adv Powder Technol 26:1570–1577. doi:10.1016/j.apt.2015.08.011

    Article  CAS  Google Scholar 

  • Hatton FL, Malmström E, Carlmark A (2015) Tailor-made copolymers for the adsorption to cellulosic surfaces. Eur Polym J 65:325–339. doi:10.1016/j.eurpolymj.2015.01.026

    Article  CAS  Google Scholar 

  • He X, Male KB, Nesterenko PN et al (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804. doi:10.1021/am403222u

    Article  CAS  Google Scholar 

  • Hoeger I, Rojas OJ, Efimenko K et al (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957. doi:10.1039/c0sm01113d

    Article  CAS  Google Scholar 

  • Holappa S, Kontturi KS, Salminen A et al (2013) Adsorption of hydrophobically end-capped poly(ethylene glycol) on cellulose. Langmuir 29:13750–13759. doi:10.1021/la402494m

    Article  CAS  Google Scholar 

  • Honorato-Rios C, Kuhnhold A, Bruckner J et al (2016) Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Front Mater 3:1–13. doi:10.3389/fmats.2016.00021

    Article  Google Scholar 

  • Hu Z, Cranston ED, Ng R, Pelton R (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30:2684–2692. doi:10.1021/la404977t

    Article  CAS  Google Scholar 

  • Hu Z, Patten T, Pelton R, Cranston ED (2015) Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals. ACS Sustain Chem Eng 3:1023–1031. doi:10.1021/acssuschemeng.5b00194

    Article  CAS  Google Scholar 

  • Hu Z, Xu R, Cranston ED, Pelton RH (2016) Stable aqueous foams from cellulose nanocrystals and methyl cellulose. Biomacromol 17:4095–4099. doi:10.1021/acs.biomac.6b01641

    Article  CAS  Google Scholar 

  • Huang L, Nishinari K (2001) Interaction between poly(ethylene glycol) and water as studied by differential scanning calorimetry. J Polym Sci Part B: Polym Phys 39:496–506. doi:10.1002/1099-0488(20010301)39:5<496:AID-POLB1023>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2:296–331

    CAS  Google Scholar 

  • Hubbe MA, Nanko H, McNeal MR (2009) Retention aid polymer interactions with cellulosic surfaces and suspensions: a review. BioResources 4:850–906

    CAS  Google Scholar 

  • Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R (2016) Colloidal silica particle synthesis and future industrial manufacturing pathways: a review. Ind Eng Chem Res 55:8891–8913. doi:10.1021/acs.iecr.6b01839

    Article  CAS  Google Scholar 

  • Ishimaru Y, Lindström T (1984) Adsorption of water-soluble, nonionic polymers onto cellulosic fibers. J Appl Polym Sci 29:1675–1691. doi:10.1002/app.1984.070290521

    Article  CAS  Google Scholar 

  • Kalashnikova I, Bizot H, Cathala B, Capron I (2012) Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromol 13:267–275. doi:10.1021/bm201599j

    Article  CAS  Google Scholar 

  • Kalashnikova I, Bizot H, Bertoncini P et al (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9:952. doi:10.1039/c2sm26472b

    Article  CAS  Google Scholar 

  • Kalasin S, Santore MM (2016) Near-surface motion and dynamic adhesion during silica microparticle capture on a polymer (solvated PEG) brush via hydrogen bonding. Macromolecules 49:334–343. doi:10.1021/acs.macromol.5b01977

    Article  CAS  Google Scholar 

  • Kargl R, Mohan T, Bračič M et al (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28:11440–11447. doi:10.1021/la302110a

    Article  CAS  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356. doi:10.1016/j.biortech.2015.12.035

    Article  CAS  Google Scholar 

  • Khandavalli S, Rothstein JP (2014) Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution. J Rheol (NY) 58:411–431. doi:10.1122/1.4864620

    Article  CAS  Google Scholar 

  • Kim SY, Meyer HW, Saalwächter K, Zukoski CF (2012) Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules 45:4225–4237. doi:10.1021/ma300439k

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456. doi:10.1021/la101795s

    Article  CAS  Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chemie Int Ed 49:6288–6308. doi:10.1002/anie.200902672

    Article  CAS  Google Scholar 

  • Kondo T, Sawatari C (1994) Intermolecular hydrogen bonding in cellulose/poly(ethylene oxide) blends: thermodynamic examination using 2,3-di-O- and 6-O-methylcelluloses as cellulose model compounds. Polymer (Guildf) 35:4423–4428. doi:10.1016/0032-3861(94)90102-3

    Article  CAS  Google Scholar 

  • Kontturi E, Johansson L, Kontturi K (2007) Cellulose nanocrystal submonolayers by spin coating. Langmuir 23:9674–9680

    Article  CAS  Google Scholar 

  • Kontturi KS, Biegaj K, Mautner A et al (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33:5707–5712. doi:10.1021/acs.langmuir.7b01236

    Article  CAS  Google Scholar 

  • Laine J, Lindström T, Glad-Nordmark G, Risinger G (2000) Studies on topochemical modification of cellulosic fibres. Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibres. Nord Pulp Pap Res J 15:520–526. doi:10.3183/NPPRJ-2000-15-05-p520-526

    Article  CAS  Google Scholar 

  • Leung K, Nielsen I, Criscenti L (2009) Elucidating the bimodal acid–base behavior of the water–silica interface from first principles. J Am Chem Soc 131:18358–18365. doi:10.1021/ja906190t

    Article  CAS  Google Scholar 

  • Li Y, Liu H, Song J et al (2011) Adsorption and association of a symmetric PEO–PPO–PEO triblock copolymer on polypropylene, polyethylene, and cellulose surfaces. ACS Appl Mater Interfaces 3:2349–2357. doi:10.1021/am200264r

    Article  CAS  Google Scholar 

  • Lindström T, Glad-Nordmark G (1983) Selective adsorption, flocculation, and fractionation of wood pulps with polyethyleneoxide. J Colloid Interface Sci 94:404–411. doi:10.1016/0021-9797(83)90280-1

    Article  Google Scholar 

  • Lindström T, Glad-Nordmark G (1984) Flocculation of latex and cellulose dispersions by means of transient polymer networks. Colloids Surf 8:337–351. doi:10.1016/0166-6622(84)80128-6

    Article  Google Scholar 

  • Liu H, Xiao H (2008) Adsorption of poly(ethylene oxide) with different molecular weights on the surface of silica nanoparticles and the suspension stability. Mater Lett 62:870–873. doi:10.1016/j.matlet.2007.06.079

    Article  CAS  Google Scholar 

  • Lopez M, Bizot H, Chambat G et al (2010) Enthalpic studies of xyloglucan–cellulose interactions. Biomacromol 11:1417–1428. doi:10.1021/bm1002762

    Article  CAS  Google Scholar 

  • Lu A, Hemraz U, Khalili Z, Boluk Y (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250. doi:10.1007/s10570-014-0173-y

    Article  CAS  Google Scholar 

  • Madathingal RR, Wunder SL (2011) Confinement effects of silica nanoparticles with radii smaller and larger than Rg of adsorbed poly(ethylene oxide). Macromolecules 44:2873–2882. doi:10.1021/ma1021693

    Article  CAS  Google Scholar 

  • Malmsten M, Linse P, Cosgrove T (1992) Adsorption of PEO–PPO–PEO block copolymers at silica. Macromolecules 25:2474–2481. doi:10.1021/ma00035a028

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B: Polym Phys 52:791–806. doi:10.1002/polb.23490

    Article  CAS  Google Scholar 

  • Martin C, Jean B (2014) Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties. Nord Pulp Pap Res J 29:19–30

    Article  CAS  Google Scholar 

  • Mathur S, Moudgil BM (1997) Adsorption mechanism(s) of poly(ethylene oxide) on oxide surfaces. J Colloid Interface Sci 196:92–98. doi:10.1006/jcis.1997.5192

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Niinivaara E, Faustini M, Tammelin T, Kontturi E (2015) Water vapor uptake of ultrathin films of biologically derived nanocrystals: quantitative assessment with quartz crystal microbalance and spectroscopic ellipsometry. Langmuir 31:12170–12176. doi:10.1021/acs.langmuir.5b01763

    Article  CAS  Google Scholar 

  • Noroozi N, Grecov D, Shafiei-Sabet S (2013) Estimation of viscosity coefficients and rheological functions of nanocrystalline cellulose aqueous suspensions. Liq Cryst 41:56–66. doi:10.1080/02678292.2013.834081

    Article  CAS  Google Scholar 

  • Oguzlu H, Boluk Y (2017) Interactions between cellulose nanocrystals and anionic and neutral polymers in aqueous solutions. Cellulose 24:131–146. doi:10.1007/s10570-016-1096-6

    Article  CAS  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2016) The role of dilute and semi-dilute cellulose nanocrystal (CNC) suspensions on the rheology of carboxymethyl cellulose (CMC) solutions. Can J Chem Eng 94:1841–1847. doi:10.1002/cjce.22597

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. doi:10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  • Pelton RH, Allen LH, Nugent HM (1980) Survey of potential retention aids for newsprint manufacture. Pulp Pap Can 81(54–56):58

    Google Scholar 

  • Pelton RH, Allen LH, Nugent HM (1981) Novel dual-polymer retention aids for newsprint and groundwood specialties. Tappi 64:89–92

    CAS  Google Scholar 

  • Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16:7920–7930. doi:10.1021/la991548q

    Article  CAS  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2016) Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8:12247–12257. doi:10.1039/C6NR01737A

    Article  CAS  Google Scholar 

  • Reid MS, Kedzior SA, Villalobos M, Cranston ED (2017a) Effect of ionic strength and surface charge density on the kinetics of cellulose nanocrystal thin film swelling. Langmuir. doi:10.1021/acs.langmuir.7b01740

    Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2017b) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. doi:10.1021/acs.langmuir.6b03765

    Article  CAS  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2017c) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opin Colloid Interface Sci 29:76–82. doi:10.1016/j.cocis.2017.03.005

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Rubio J, Kitchener J (1976) The mechanism of adsorption of poly(ethylene oxide) flocculant on silica. J Colloid Interface Sci 57:132–142. doi:10.1016/0021-9797(76)90182-X

    Article  CAS  Google Scholar 

  • Saigal T, Riley JK, Golas PL et al (2013) Poly(ethylene oxide) star polymer adsorption at the silica/aqueous interface and displacement by linear poly(ethylene oxide). Langmuir 29:3999–4007. doi:10.1021/la305085a

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133. doi:10.1021/la303380v

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359. doi:10.1007/s10570-014-0407-z

    Article  CAS  Google Scholar 

  • Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. Tappi 50:496–501. doi:10.1002/polc.5070110104

    CAS  Google Scholar 

  • Sundman O (2014) Adsorption of four non-ionic cellulose derivatives on cellulose model surfaces. Cellulose 21:115–124. doi:10.1007/s10570-013-0105-2

    Article  CAS  Google Scholar 

  • Tarkow H, Feist WC, Southerland CF (1966) Interaction of wood with polymeric materials size. For Prod J 16:61–65

    CAS  Google Scholar 

  • Trey SM, Netrval J, Berglund L, Johansson M (2010) Electron-beam-initiated polymerization of poly(ethylene glycol)-based wood impregnants. ACS Appl Mater Interfaces 2:3352–3362. doi:10.1021/am100778q

    Article  CAS  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998. doi:10.1021/ma201649f

    Article  CAS  Google Scholar 

  • Utsuno K, Uludaǧ H (2010) Thermodynamics of polyethylenimine-DNA binding and DNA condensation. Biophys J 99:201–207. doi:10.1016/j.bpj.2010.04.016

    Article  CAS  Google Scholar 

  • Viet D, Beck-Candanedo S, Gray DG (2006) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113. doi:10.1007/s10570-006-9093-9

    Article  CAS  Google Scholar 

  • Wågberg L (2000) Polyelectrolyte adsorption onto cellulose fibres—a review. Nord Pulp Pap Res J 15:586–597. doi:10.3183/NPPRJ-2000-15-05-p586-597

    Article  Google Scholar 

  • Xiao H, Pelton RH, Archie H (1996) Novel rention aids for mechanical pulps. Tappi J 79:129–135

    CAS  Google Scholar 

  • Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. Cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. doi:10.1021/am302624t

    Article  CAS  Google Scholar 

  • Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643. doi:10.1021/acssuschemeng.6b00126

    Article  CAS  Google Scholar 

  • Zaman AA (2000) Effect of polyethylene oxide on the viscosity of dispersions of charged silica particles: interplay between rheology, adsorption, and surface charge. Colloid Polym Sci 278:1187–1197. doi:10.1007/s003960000385

    Article  CAS  Google Scholar 

  • Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442. doi:10.1021/la026338j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Natural Sciences and Engineering Research Council of Canada, Industrial Postgraduate Scholarship program sponsored by Cabot Corporation is gratefully acknowledged. We additionally acknowledge Cabot Corporation for their donation of CAB-O-SIL® M-5 fumed silica. Professors R. Pelton, A. Guarne, R. Epand and J. Moran-Mirabal are thanked for sharing equipment to characterize CNCs. Additionally, the Biointerfaces Institute and the Brockhouse Institute for Materials Research at McMaster University are acknowledged for support and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily D. Cranston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, M.S., Marway, H.S., Moran-Hidalgo, C. et al. Comparison of polyethylene glycol adsorption to nanocellulose versus fumed silica in water. Cellulose 24, 4743–4757 (2017). https://doi.org/10.1007/s10570-017-1482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1482-8

Keywords

Navigation