Skip to main content

Advertisement

Log in

Silver nanoparticles supported on polyethylene glycol/cellulose acetate ultrafiltration membranes: preparation and characterization of composite

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this research work, silver nanoparticles/polyethylene glycol/cellulose acetate ultrafiltration (Ag-NPs/PEG/CA UF) composite membranes were synthesized and characterized. The Ag-NPs were embedded in the polymer matrix by two methods: in situ and ex situ; varying the type of solvent used (dimethylformamide, DMF; or N-methyl-2-pyrrolidone, NMP). The Ag-NPs used in the ex situ method were synthesized by a green chemistry reduction method. The composite membranes were characterized by Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and thermogravimetric analysis-derivative thermogravimetric analysis (TGA-DTG); the molecular weight cut-off and permeability were also determined. Moreover, the antibacterial efficiency of the composite membranes was measured against bacteria like Escherichia coli and Staphylococcus aureus. By FTIR-ATR analysis it was possible to observe that the Ag-NPs embedded in membranes changed the membrane morphology. The SEM-EDS analysis showed that the in situ composite membranes have good dispersity of Ag-NPs, DMF FB being the most densely populated obtained. By another hand, the ex situ DMF NP composite membrane presented the highest amount of silver signals per unit area (µm2). The permeability of the membrane was affected by the presence of the Ag-NPs; the DMF NP composite membrane had the highest permeate flow, while DMF FB had the highest antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abhishek L, Abishek R, K DK, Sivakumar G (2014) Advanced water treatment using nano-materials. Int J Innov Res Sci Eng Technol 3:17130–17138. doi:10.15680/IJIRSET.2014.0311005

    Google Scholar 

  • Ahearn DG, May LL, Gabriel MM (1995) Adherence of organisms to silver-coated surfaces. J Ind Microbiol 15:372–376. doi:10.1007/BF01569993

    Article  CAS  Google Scholar 

  • Ahmad A, Jamshed F, Riaz T et al (2016) Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination. Carbohydr Polym 149:207–216. doi:10.1016/j.carbpol.2016.04.104

    Article  CAS  Google Scholar 

  • Amin MT, Alazba AA (2014) A review of nanomaterials based membranes for removal of contaminants from polluted waters. Membr Water Treat 5:123–146. doi:10.12989/mwt.2014.5.2.123

    Article  Google Scholar 

  • Ananth A, Arthanareeswaran G, Ismail AF et al (2014) Effect of bio-mediated route synthesized silver nanoparticles for modification of polyethersulfone membranes. Colloids Surfaces A Physicochem Eng Asp 451:151–160. doi:10.1016/j.colsurfa.2014.03.024

    Article  CAS  Google Scholar 

  • Barud HS, Barrios C, Regiani T et al (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28:515–518. doi:10.1016/j.msec.2007.05.001

    Article  CAS  Google Scholar 

  • Basri H, Ismail AF, Aziz M (2011) Assessing the effect of PVP of various molecular weight (MW) in PES-Ag membranes: antimicrobial study using E. Coli. J Sci Technol 3:59–68

    Google Scholar 

  • Benavente J, García ME, Urbano N et al (2017) Inclusion of silver nanoparticles for improving regenerated cellulose membrane performance and reduction of biofouling. Int J Biol Macromol 103:758–763. doi:10.1016/j.ijbiomac.2017.05.133

    Article  CAS  Google Scholar 

  • Biswas P, Bandyopadhyaya R (2017) Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module. J Colloid Interface Sci 491:13–26. doi:10.1016/j.jcis.2016.11.060

    Article  CAS  Google Scholar 

  • Cao X, Tang M, Liu F et al (2010) Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids Surfaces B Biointerfaces 81:555–562. doi:10.1016/j.colsurfb.2010.07.057

    Article  CAS  Google Scholar 

  • Carré-Rangel L, Alonso-Nuñez G, Espinoza-Gómez H, Flores-López LZ (2015) Green synthesis of silver nanoparticles: effect of dextran molecular weight used as stabilizing-reducing agent. J Nanosci Nanotechnol 15:9849–9855. doi:10.1166/jnn.2015.10334

    Article  Google Scholar 

  • Choi O, Deng KK, Kim NJ et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. doi:10.1016/j.watres.2008.02.021

    Article  CAS  Google Scholar 

  • Cruz MC, Ruano G, Wolf M et al (2015) Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties. Chem Eng Res Des 94:524–537. doi:10.1016/j.cherd.2014.09.014

    Article  CAS  Google Scholar 

  • de Santa Maria LC, Santos ALC, Oliveira PC et al (2009) Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 63:797–799. doi:10.1016/j.matlet.2009.01.007

    Article  Google Scholar 

  • Díaz-Cruz C, Alonso Nuñez G, Espinoza-Gómez H, Flores-López LZ (2016) Effect of molecular weight of PEG or PVA as reducing-stabilizing agent in the green synthesis of silver-nanoparticles. Eur Polym J 83:265–277. doi:10.1016/j.eurpolymj.2016.08.025

    Article  Google Scholar 

  • Dong C, Wang Z, Wu J et al (2017) A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property. Desalination 401:32–41. doi:10.1016/j.desal.2016.06.034

    Article  CAS  Google Scholar 

  • Drews A (2010) Membrane fouling in membrane bioreactors-characterization, contradictions, cause and cures. J Membr Sci 363:1–28. doi:10.1016/j.memsci.2010.06.046

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Li X et al (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C 29:1216–1219. doi:10.1016/j.msec.2008.09.017

    Article  CAS  Google Scholar 

  • Huang L, Zhao S, Wang Z et al (2016) In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J Membr Sci 499:269–281. doi:10.1016/j.memsci.2015.10.055

    Article  CAS  Google Scholar 

  • Kim J, Van Der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349. doi:10.1016/j.envpol.2010.03.024

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362. doi:10.1016/j.watres.2007.07.024

    Article  Google Scholar 

  • Koseoglu-Imer DY, Kose B, Altinbas M, Koyuncu I (2013) The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): physical properties, filtration performances, and biofouling resistances of membranes. J Membr Sci 428:620–628. doi:10.1016/j.memsci.2012.10.046

    Article  CAS  Google Scholar 

  • Krystosiak P, Tomaszewski W, Megiel E (2017) High-density polystyrene-grafted silver nanoparticles and their use in the preparation of nanocomposites with antibacterial properties. J Colloid Interface Sci 498:9–21. doi:10.1016/j.jcis.2017.03.041

    Article  CAS  Google Scholar 

  • Lin S, Chen L, Huang L et al (2015) Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Ind Crops Prod 70:395–403. doi:10.1016/j.indcrop.2015.03.040

    Article  CAS  Google Scholar 

  • Mandal A, Meda V, Zhang WJ et al (2012) Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surfaces B Biointerfaces 90:191–196. doi:10.1016/j.colsurfb.2011.10.021

    Article  CAS  Google Scholar 

  • Mecha CA, Pillay VL (2014) Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J Membr Sci 458:149–156. doi:10.1016/j.memsci.2014.02.001

    Article  CAS  Google Scholar 

  • Misdan N, Ismail AF, Hilal N (2015) Recent advances in the development of (bio) fouling resistant thin film composite membranes for desalination. Desalination 380:105–111. doi:10.1016/j.desal.2015.06.001

    Article  Google Scholar 

  • Msomi P, Musyoka S, Mhlanga S, Nxumalo E (2015) Evaluation of nanofiber mats decorated with silver nanoparticles for organic fouling control. Mater Today Proc 2:4158–4166. doi:10.1016/j.matpr.2015.08.046

    Article  Google Scholar 

  • Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. doi:10.1016/j.desal.2010.11.033

    Article  CAS  Google Scholar 

  • Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes (Basel) 2:804–840. doi:10.3390/membranes2040804

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06

    Article  CAS  Google Scholar 

  • Prakash S, Chakrabarty T, Singh AK, Shahi VK (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens Bioelectron 41:43–53. doi:10.1016/j.bios.2012.09.031

    Article  CAS  Google Scholar 

  • Sawada I, Fachrul R, Ito T et al (2012) Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J Membr Sci 387–388:1–6. doi:10.1016/j.memsci.2011.06.020

    Article  Google Scholar 

  • Segala K, Nista SVG, Cordi L et al (2015) Silver nanoparticles incorporated into nanostructured biopolymer membranes produced by electrospinning: a study of antimicrobial activity. Braz J Pharm Sci 51:911–921. doi:10.1590/S1984-82502015000400017

    Article  Google Scholar 

  • Suarez-Cerda J, Alonso-Nuñez G, Espinoza-Gomez H, Flores-López LZ (2014) A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method. Mater Sci Eng C 43:21–26. doi:10.1016/j.msec.2014.07.006

    Article  CAS  Google Scholar 

  • Suarez-Cerda J, Alonso-Nuñez G, Espinoza-Gomez H, Flores-López LZ (2015) Synthesis, kinetics and photocatalytic study of “ultra-small” Ag-NPs obtained by a green chemistry method using an extract of Rosa “Andeli” double delight petals. J Colloid Interface Sci 458:169–177. doi:10.1016/j.jcis.2015.07.049

    Article  CAS  Google Scholar 

  • Taurozzi JS, Arul H, Bosak VZ et al (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325:58–68. doi:10.1016/j.memsci.2008.07.010

    Article  CAS  Google Scholar 

  • Yang HL, Te Lin JC, Huang C (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43:3777–3786. doi:10.1016/j.watres.2009.06.002

    Article  CAS  Google Scholar 

  • Yang G, Xie J, Hong F et al (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845. doi:10.1016/j.carbpol.2011.08.079

    Article  CAS  Google Scholar 

  • Yin J, Yang Y, Hu Z, Deng B (2013) Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J Membr Sci 441:73–82. doi:10.1016/j.memsci.2013.03.060

    Article  CAS  Google Scholar 

  • Yin T, Walker HW, Chen D, Yang Q (2014) Influence of pH and ionic strength on the deposition of silver nanoparticles on microfiltration membranes. J Membr Sci 449:9–14. doi:10.1016/j.memsci.2013.08.020

    Article  CAS  Google Scholar 

  • Zhang M, Zhang K, De Gusseme B, Verstraete W (2012) Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res 46:2077–2087. doi:10.1016/j.watres.2012.01.015

    Article  CAS  Google Scholar 

  • Zhang M, Field RW, Zhang K (2014) Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J Membr Sci 471:274–284. doi:10.1016/j.memsci.2014.08.021

    Article  CAS  Google Scholar 

  • Zodrow K, Brunet L, Mahendra S et al (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723. doi:10.1016/j.watres.2008.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support for this research work by the Dirección General de Educación Superior Tecnológica México (DGEST grant 5428.14-P). Also, grateful acknowledgment is given to Francisco Ruiz Medina (TEM) from the Centro de Nanociencias y Nanotecnología de la UNAM and Ignacio Rivero Espejel (SEM-EDS) from the Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucía Z. Flores-López or Heriberto Espinoza-Gomez.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caloca, J., Flores-López, L.Z., Espinoza-Gomez, H. et al. Silver nanoparticles supported on polyethylene glycol/cellulose acetate ultrafiltration membranes: preparation and characterization of composite. Cellulose 24, 4997–5012 (2017). https://doi.org/10.1007/s10570-017-1471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1471-y

Keywords

Navigation