Stability and aging of solubilized dialdehyde cellulose

Abstract

Derivatization of alpha cellulose by periodate oxidation is an useful method for production of dialdehyde cellulose (DAC). Conversion of the 2,3-hydroxyl groups to a pair of aldehyde groups along with cleavage of the C2–C3 bond of anhydroglucose unit reduces crystallinity of initial material, leaving DAC soluble in water under mild conditions. Solubilization in hot water is necessary to obtain product in solution. The first part of our work confirmed that solubilization causes severe degradation of the molecular weight of the polymer. However, the chemistry and processes within these solutions are currently poorly understood. In the main part of the study, products of periodate oxidation were identified in acidic DAC solutions by NMR spectroscopy for the first time. Subsequent investigation of the acidic DAC solution's aging demonstrated that the low pH of the DAC solution considerably slows the degradation processes, namely the decrease of reactive aldehyde group content when compared to previous studies. Large increase in the molecular weight, observed after 14 days of aging, was explained by formation of intermolecular hemiacetals. Our results demonstrate that pH-stabilized aqueous DAC solutions remained active (e.g. applicable for cross-linking reactions) even several weeks after preparation, therefore reducing the need to prepare a fresh solution each time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bikales NM, Segal L (1971) Cellulose and cellulose derivatives. Wiley-Interscience, New York

    Google Scholar 

  2. Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Hagabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohyd Polym 93:207–215. doi:10.1016/j.carbpol.2012.03.086

    CAS  Article  Google Scholar 

  3. Engel P, Hein L, Spiess AC (2012) Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnol Biofuels 5:77. doi:10.1186/1754-6834-5-77

    CAS  Article  Google Scholar 

  4. Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J Appl Polym Sci 82:1195–1202. doi:10.1002/app.1953

    CAS  Article  Google Scholar 

  5. Fox SC, Li B, Xu D, Edgar DM (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972. doi:10.1021/bm200260d

    CAS  Article  Google Scholar 

  6. Hou Q, Liu W, Liu Z, Duan B, Bai L (2008) Characteristics of antimicrobial fibers prepared with wood periodate oxycellulose. Carbohydr Polym 74:235–240. doi:10.1016/j.carbpol.2008.02.010

    CAS  Article  Google Scholar 

  7. Kim JY, Choi HM (2014) Cationization of periodate-oxidized cotton cellulose with choline chloride. Cell Chem Technol 48:25–32

    CAS  Google Scholar 

  8. Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85. doi:10.1016/S0040-6031(00)00734-6

    CAS  Article  Google Scholar 

  9. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492. doi:10.1021/bm0000337

    CAS  Article  Google Scholar 

  10. Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10. doi:10.1016/j.carbpol.2003.10.013

    CAS  Article  Google Scholar 

  11. Kono H, Hashimoto H, Shimizu Y (2015) NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr Polym 118:91–100. doi:10.1016/j.carbpol.2014.11.004

    CAS  Article  Google Scholar 

  12. Koprivica S, Siller M, Hosoya T, Roggenstein W, Rosenau T, Potthast A (2016) Regeneration of aqueous periodate solutions by ozone treatment: a sustainable approach for dialdehyde cellulose production. Chemsuschem 9:825–833. doi:10.1002/cssc.201501639

    CAS  Article  Google Scholar 

  13. Larsson PA, Pettersson T, Wågberg L (2014) Improved barrier films of cross-linked cellulose nanofibrils: a microscopy study. Green Mat 2:163–168. doi:10.1680/gmat.14.00018

    Article  Google Scholar 

  14. Laҫin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27. doi:10.1016/j.ijbiomac.2014.03.003

    Article  Google Scholar 

  15. Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng, C 29:1635–1642. doi:10.1016/j.msec.2009.01.006

    CAS  Article  Google Scholar 

  16. Liimatainen H, Sirviö JA, Pajari H, Hormi O, Niinimäki J (2013) Regeneration and recycling of aqueous periodate solution in dialdehyde cellulose production. J Wood Chem Technol 33:258–266. doi:10.1080/02773813.2013.783076

    CAS  Article  Google Scholar 

  17. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932. doi:10.1021/bm5002944

    CAS  Article  Google Scholar 

  18. Maekawa E (1991) Analysis of oxidized moiety of partially periodate-oxidized cellulose by NMR spectroscopy. J Appl Polym Sci 43:417–422. doi:10.1002/app.1991.070430301

    CAS  Article  Google Scholar 

  19. Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297. doi:10.1002/app.1984.070290705

    CAS  Article  Google Scholar 

  20. Mester LJ (1955) The formazan reaction in proving the structure of periodate oxidized polysaccharides. Am Chem Soc 77:5452–5453. doi:10.1021/ja01625a097

    CAS  Article  Google Scholar 

  21. Nikiforova TE, Kozlov VA (2011) Various factors affecting heavy metal ion sorption from aqueous media by sorbent containing cellulose. Prot Met Phys Chem Surf 47:20–24. doi:10.1134/S2070205110051016

    CAS  Article  Google Scholar 

  22. Röhrling J, Potthast A, Lange T, Rosenau T, Adorjan I, Hofinger A et al (2002) Synthesis of oxidized methyl 4-O-methyl-beta-d-glucopyranoside and methyl beta-d-glucopyranosyl-(1– > 4)-beta-d-glucopyranoside derivatives as substrates for fluorescence labeling reactions. Carbohydr Res 337:691–700. doi:10.1016/S0008-6215(02)00048-4

    Article  Google Scholar 

  23. Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose 22:2245–2261. doi:10.1007/s10570-015-0648-5

    CAS  Article  Google Scholar 

  24. Sirviö JA, Hyvakko U, Liimatainen H, Niinimäki J, Hormi O (2011a) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83:1293–1297. doi:10.1016/j.carbpol.2010.09.036

    Article  Google Scholar 

  25. Sirviö JA, Liimatainen H, Niinimäki J, Hormi O (2011b) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265. doi:10.1016/j.carbpol.2011.04.054

    Article  Google Scholar 

  26. Sirviö JA, Liimatainen H, Visanko M, Niinimäki J (2014) Optimization of dicarboxylic acid cellulose synthesis: reaction stoichiometry and role of hypochlorite scavengers. Carbohydr Polym 114:73–77. doi:10.1016/j.carbpol.2014.07.081

    Article  Google Scholar 

  27. Spedding HJ (1960) Infrared spectra of periodate-oxidized cellulose. J Chem Soc. doi:10.1039/JR9600003147

    Google Scholar 

  28. Sulaeva I, Klinger KM, Amer H, Henniges U, Rosenau T, Potthast A (2015) Determination of molar mass distributions of highly oxidized dialdehyde cellulose by size exclusion chromatography and asymmetric flow field-flow fractionation. Cellulose 22:3569–3581. doi:10.1007/s10570-015-0769-x

    CAS  Article  Google Scholar 

  29. Varavinit S, Chaokasem N, Shobsgob S (2001) Covalent immobilization of a glucoamylase to bagasse dialdehyde cellulose. World J Microbiol Biotechnol 17:721–725. doi:10.1023/A:1012984802624

    CAS  Article  Google Scholar 

  30. Veelaert S, Wit D, Gotlieb KF, Verhé R (1997) Chemical and physical transitions of periodate oxidized potato starch in water. Carbohydr Polym 33:153162. doi:10.1016/S0144-8617(97)00046-5

    Article  Google Scholar 

  31. Weber V, Ettenauer M, Linsberger I, Loth F, Thummler K, Feldner A et al (2010) Functionalization and application of cellulose microparticles as adsorbents in extracorporeal blood purification. Macromol Symp 294:90–95. doi:10.1002/masy.200900042

    CAS  Article  Google Scholar 

  32. Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives: characterization and structure. In: Zugenmaier P (ed) Cellulose derivatives. Springer, Berlin, Heidelberg, pp 175–206

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504), Czech Science Foundation grant 16-05961S to J.V. and an internal grant from TBU in Zlin no. IGA/CPS/2015/005. The internal grant was funded by financial support for specific research by the university. The NMR study was carried out with the support of core facilities of the Central European Institute of Technology (CEITEC)—open access project ID number LM2011020, funded by the Ministry of Education, Youth and Sports of the Czech Republic under the activity “Projects of major infrastructures for research, development and innovations”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivo Kuřitka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Münster, L., Vícha, J., Klofáč, J. et al. Stability and aging of solubilized dialdehyde cellulose. Cellulose 24, 2753–2766 (2017). https://doi.org/10.1007/s10570-017-1314-x

Download citation

Keywords

  • Periodate oxidation
  • Solubilization
  • Dialdehyde cellulose
  • DAC
  • Aging
  • NMR