Skip to main content
Log in

Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study investigates the potential of wood wastes, specifically post-consumer fiberboards, as a new source for cellulose nanocrystals (CNC). This underused resource has currently no commercially viable way to recycle it and so the volumes of fiberboard waste are growing rapidly. A sequential chemical fractionation was used to separate the three main constituents of wood, namely cellulose, hemicelluloses and lignin, and the non-wood components present in fiberboards, such as resins and finishes (e.g. varnishes, paints, plastics, laminates, etc.). Most of the non-cellulosic components and non-wood elements were removed by an alkali treatment followed by bleaching, resulting in a cellulosic fraction which is suitable for the further isolation of CNC by an acid hydrolysis step. The intermediate and final products were characterized by chemical composition, microscopic, spectroscopic and X-ray diffraction methods. The CNC obtained from wood waste are totally devoid of traces of contaminants and possess comparable characteristics and quality to those extracted from virgin wood fibers. The results indicate that fiberboard wastes can be used as promising alternative source for nanocelluloses production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abitbol T et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. doi:10.1016/j.copbio.2016.01.002

    Article  CAS  Google Scholar 

  • ADEME (2010) Dimensionnement et cadrage de filieres pour la gestion des mobiliers menagers et professionnels usages—Rapport final

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  • Alexandropoulos D, Nakos P, Mantanis G (1998) European approach to particleboard and MDF adhesives. In: Proceedings of 1998 resin and blending seminar, pp 137–146

  • Andersson S, Serimaa R, Paakkari T, SaranpÄÄ P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. doi:10.1007/s10086-003-0518-x

    Google Scholar 

  • Anonymous (2013) Environmental product declaration: medium density fiberboard, Report. American Wood Council and Canadian Wood Council

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf Physicochem Eng Asp 142:75–82. doi:10.1016/S0927-7757(98)00404-X

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  CAS  Google Scholar 

  • Beele PM (2009) Demonstration of end uses for recovered MDF fibre. WRAP (Waste and Resources Action Programme), Final report

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299. doi:10.1016/0008-6215(83)88244-5

    Article  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489. doi:10.1016/0003-2697(73)90377-1

    Article  CAS  Google Scholar 

  • Briesemeister R (2013) Analyzing the suitability of X-ray fluorescence (XRF) devices for detecting foreign material in recovered wood. Diplomarbeit, Technische Universität Clausthal

  • Brito BL, Pereira F, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536. doi:10.1007/s10570-012-9738-9

    Article  CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal U, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. doi:10.1007/s10570-015-0615-1

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • Costa LAS, Assis DdJ, Gomes GVP, Silva JBAd, Fonsêca AF, Druzian JI (2015) Extraction and characterization of nanocellulose from corn stover. Mater Today Proc 2:287–294. doi:10.1016/j.matpr.2015.04.045

    Article  Google Scholar 

  • de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromol 11:473–480. doi:10.1021/bm9011985

    Article  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188. doi:10.1007/bf02228800

    Article  CAS  Google Scholar 

  • Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I, vol 186., Advances in polymer scienceSpringer, Berlin Heidelberg, pp 1–67. doi:10.1007/b136816

    Chapter  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65. doi:10.1021/bm700769p

    Article  CAS  Google Scholar 

  • Emandi A, Ileana Vasiliu C, Budrugeac P, Stamatin I (2011) Quantitative investigation of wood composition by integrated FT-IR and thermogravimetric methods. Cellul Chem Technol 45:579

    CAS  Google Scholar 

  • EPF (2016) Annual Report 2015–2016. European Panel Federation, Brussels

    Google Scholar 

  • FAOSTAT (2015) Forestry production and trade. http://faostat3.fao.org/browse/F/FO/E. Accessed 17 Feb 2016

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. W. de Gruyter, Berlin

    Google Scholar 

  • Ganne-Chédeville C, Jääskeläinen A-S, Froidevaux J, Hughes M, Navi P (2012) Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 66:163–170

    Article  Google Scholar 

  • Garcia de Rodriguez LN, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270. doi:10.1007/s10570-005-9039-7

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hubbe M, Rojas O, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Izydorczyk MS, Macri LJ, MacGregor AW (1998) Structure and physicochemical properties of barley non-starch polysaccharides—II. Alkaliextractable β-glucans and arabinoxylans. Carbohydr Polym 35:259–269. doi:10.1016/S0144-8617(97)00136-7

    Article  CAS  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. doi:10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  • Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095

    Article  CAS  Google Scholar 

  • Kandelbauer A, Despres A, Pizzi A, Taudes I (2007) Testing by Fourier transform infrared species variation during melamine-urea-formaldehyde resin preparation. J Appl Polym Sci 106:2192–2197. doi:10.1002/app.26757

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kearley V, Goroyias G (2004) Wood panel recycling at a semi-industrial scale. In: Proceedings of the 8th European panel products symposium, pp 1–18

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II, vol 205., Advances in polymer scienceSpringer, Berlin Heidelberg, pp 49–96. doi:10.1007/12_097

    Chapter  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 111:979–987. doi:10.1016/j.carbpol.2014.04.092

    Article  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. doi:10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  • Morán J, Alvarez V, Cyras V, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  • Morelli CL, Marconcini JM, Pereira FV, Bretas RES, Branciforti MC (2012) Extraction and characterization of cellulose nanowhiskers from balsa wood. Macromol Symposia 319:191–195. doi:10.1002/masy.201100158

    Article  CAS  Google Scholar 

  • Moriana R, Vilaplana F, Ek M (2015) Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose 22:3409–3423. doi:10.1007/s10570-015-0738-4

    Article  CAS  Google Scholar 

  • Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149. doi:10.1016/j.carbpol.2015.12.020

    Article  CAS  Google Scholar 

  • Pandey K (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  CAS  Google Scholar 

  • Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi:10.1186/1754-6834-3-10

    Article  Google Scholar 

  • Park Y-K, Park K-S, Park SH (2013) Fast pyrolysis of medium-density fiberboard using a fluidized bed reactor. Appl Chem Eng 24:672–675

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Zhu J, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234

    Article  CAS  Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172. doi:10.1016/s0141-8130(05)80008-x

    Article  CAS  Google Scholar 

  • Revol J-F, Godbout L, Dong X-M, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134

    Article  CAS  Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites, chap 3. CRC press, Boca Raton, pp 35–74

  • Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. Acs Appl Mater Interfaces 6:6127–6138. doi:10.1021/am500359f

    Article  CAS  Google Scholar 

  • Stevanovic T, Perrin D (2009) Chimie du bois. Presses polytechniques et universitaires romandes

  • Tonoli G, Teixeira E, Corrêa A, Marconcini J, Caixeta L, Pereira-da-Silva M, Mattoso L (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Wise LE (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Vance, Lincolnshire

    Google Scholar 

  • Xiao B, Sun XF, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319. doi:10.1016/S0141-3910(01)00163-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the MATIERES project and the “Région Pays de la Loire”. We thank Emilie Perrin, INRA, for her excellent technical support for the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Couret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couret, L., Irle, M., Belloncle, C. et al. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 24, 2125–2137 (2017). https://doi.org/10.1007/s10570-017-1252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1252-7

Keywords

Navigation