Skip to main content

Advertisement

Log in

Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

With the depletion of crude oil reserves, the ever-increasing global energy consumption encourages the efforts to find alternative renewable sources for production of biofuels and value-added chemicals. The conversions of lignocellulosic biomass into biofuels and commodity chemicals via the biotechnological pathway have been the recent trend. Specifically, these products can be obtained through fermentation of reducing sugars, which are the main but basic derivatives from the biomass. In order to overcome the recalcitrant structure of the biomass for effective reducing sugar recovery, a pretreatment stage is normally required. Currently, one of the most novel forms of biomass pretreatment is using energy irradiation methods such as electron beam, gamma ray, pulsed electrical field, microwave and ultrasound. In general, these technologies are often used together with other more conventional chemical and/or biological pretreatment techniques for enhancing sugar recovery. Nevertheless, energy irradiation offers significant improvement in terms of possible cost reduction opportunities and reduced toxicity. Hence, this review highlights the recent studies of using energy irradiation for pretreating biomass as well as the industrial applications of reducing sugars in biotechnological, chemical and fuel sectors. In short, more research needs to be done at the scientific, engineering and economic levels to make energy irradiation one of the front runners in the field of biomass pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Rehman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    Article  Google Scholar 

  • Akhtar J, Idris A, Aziz RA (2014) Recent advances in production of succinic acid from lignocellulosic biomass. Appl Microbiol Biotechnol 98:987–1000

    Article  CAS  Google Scholar 

  • Albuquerque TLD, Silva IJD Jr, Macedo GRD, Rocha MV (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789

    Article  Google Scholar 

  • Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg CK (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg 9:155–1560

    Article  CAS  Google Scholar 

  • Bak JS (2014) Process evaluation of electron beam irradiation-based biodegradation relevant to lignocellulose bioconversion. SpringerPlus 3(487):1–6

    Google Scholar 

  • Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290

    Article  CAS  Google Scholar 

  • Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37:109–116

    Article  CAS  Google Scholar 

  • Buruiana CT, Garrote G, Vizireanu C (2013) Bioethanol production from residual lignocellulosic materials: a review—part I. Food Technol 37(1):9–24

    CAS  Google Scholar 

  • Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580

    Article  CAS  Google Scholar 

  • Bussemaker MJ, Xu F, Zhang D (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour Technol 148:15–23

    Article  CAS  Google Scholar 

  • Chen WH, Tu YJ, Sheen HK (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734

    Article  CAS  Google Scholar 

  • Chen C, Boldor D, Aita G, Walker M (2012a) Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour Technol 110:190–197

    Article  CAS  Google Scholar 

  • Chen WH, Ye SC, Sheen HK (2012b) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energy 93:237–244

    Article  CAS  Google Scholar 

  • Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  CAS  Google Scholar 

  • Chosdu R, Hilmy N, Erizal Erlinda TB, Abbas B (1993) Radiation and chemical pretreatment of cellulosic waste. Radiat Phys Chem 42:695–698

    Article  CAS  Google Scholar 

  • Chung BY, Lee JT, Bai HW, Kim UJ, Bae HJ, Wi SG, Cho JY (2012) Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiat Phys Chem 81:1003–1007

    Article  CAS  Google Scholar 

  • Chunping Y, Zhiqiang S, Guoce Y, Jianlong W (2008) Effect and aftereffect of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour Technol 99:6240–6245

    Article  Google Scholar 

  • Darji D, Alias Y, Som FM, Razak NHA (2015) Microwave heating and hydrolysis of rubber wood biomass in ionic liquids. J Chem Technol Biotechnol 90:2050–2056

    Article  CAS  Google Scholar 

  • Diaz AB, Moretti MMDS, Bussoli CB, Nunes CDCC, Blandino A, Silva RD, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323

    Article  CAS  Google Scholar 

  • Duarte CL, Ribeiro MA, Oikawa H, Mori MN, Napolitano CM, Galvao CA (2012) Electron beam combined with hydrothermal pretreatment for enhancing the enzymatic convertibility of sugarcane bagasse. Radiat Phys Chem 81:1008–1011

    Article  CAS  Google Scholar 

  • Eckelberry ND, Green MP, Fraser, SA, United States Patent Application Publication (2011) Systems, apparatuses, and methods for extracting non-polar lipids from an aqueous algae slurry and lipids produced therefrom. USA Patent US 2011/0095225 A1

  • Fan LT, Gharpuray MM, Lee YH (1981) Evaluation of pretreatments for enzymatic conversion of agricultural residues. Biotechnol Bioeng Symp 11:29–45

    CAS  Google Scholar 

  • Gabhane J, Prince William SPM, Gadhe A, Rath R, Vaidya AN, Wate S (2014a) Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag 34:498–503

    Article  CAS  Google Scholar 

  • Gabhane J, Prince William SPM, Vaidya AN, Anand D, Wate S (2014b) Pretreatment of garden biomass by alkali-assisted ultrasonication: effects on enzymatic hydrolysis and ultrastructural changes. J Environ Health Sci Eng 12:76

    Article  Google Scholar 

  • Grewell D, Montalbo-Lomboy M (2013) Ultrasonics for enhanced fluid biofuel production. In: Xie H, Gathergood N (eds) The role of green chemistry in biomass processing and conversion. Wiley, Hoboken, pp 375–405

    Google Scholar 

  • Gryczka U, Migdal W, Chmielewska D, Antoniak M, Kaszuwara W, Jastrzebska A, Olszyna A (2014) Examination of changes in the morphology of Lignocellulosic fibers treated with e-beam irradiation. Radiat Phys Chem 94:226–230

    Article  CAS  Google Scholar 

  • Hodnett M, Zeqiri B (1997) A strategy for the development and standardisation of measurement methods of high power/cavitation ultrasonic fields: a review of high power field measurement techniques. Ultrason Sonochem 4:273–288

    Article  CAS  Google Scholar 

  • Hong SH, Lee JT, Lee S, Wi SG, Cho EJ, Singh S, Lee SS, Chung BY (2014) Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production. Radiat Phys Chem 94:231–235

    Article  Google Scholar 

  • Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication treatment. Biochem Eng J 17:79–83

    Article  CAS  Google Scholar 

  • Imam T, Capareda S (2012) Ultrasonic and high-temperature pretreatment, enzymatic hydrolysis and fermentation of lignocellulosic sweet sorghum to bio-ethanol. Int J Ambient Energy 33(3):152–160

    Article  CAS  Google Scholar 

  • Iqbal HMN, Kyazze G, Keshavarz T (2013) Biotech applications of biomass. Bioresources 8(2):3157–3176

    Article  Google Scholar 

  • Janker-Obermeier I, Sieber V, Faulstich M, Schieder D (2012) Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Ind Crop Prod 39:198–203

    Article  CAS  Google Scholar 

  • Jiang J, Zhao Q, Wei L, Wang K, Lee DJ (2011) Degradation and characteristic changes of organic matter in sewage sludge, using microbial fuel cell with ultrasound pretreatment. Bioresour Technol 102:272–277

    Article  CAS  Google Scholar 

  • Kang KE, Jeong GT, Park DH (2013) Rapeseed-straw enzymatic digestibility enhancement by sodium hydroxide treatment under ultrasound irradiation. Bioproc Biosys Eng 36:1019–1029

    Article  CAS  Google Scholar 

  • Kannan TS, Ahmed AS, Ani FN (2013) Energy efficient microwave irradiation of sago bark waste (SBW) for bioethanol production. Adv Mater Res 701:249–253

    Article  Google Scholar 

  • Karinen R, Vilonen K, Niemela M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016

    Article  CAS  Google Scholar 

  • Karthika K, Arun AB, Rekha PD (2012) Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr Polym 90:1038–1045

    Article  CAS  Google Scholar 

  • Karthika K, Arun AB, Melo JS, Mittal KC, Kumar M, Rekha PD (2013) Hydrolysis of acid and alkali presoaked lignocellulosic biomass exposed to electron beam irradiation. Bioresour Technol 129:646–649

    Article  CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K, Gibbons WR (2014) Sequential extrusion-microwave pretreatment of switchgrass and big bluestem. Bioresour Technol 153:393–398

    Article  CAS  Google Scholar 

  • Kempkes MA, Roth I, Gaudreau MPJ, United States Patent Application Publication (2011) Pulsed electrical field (PEF) method for continuous enhanced extraction of oil and lipids from small aquatic plants. USA Patent US 2011/0107655 A1

  • Kim I, Han JI (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 46:210–217

    Article  CAS  Google Scholar 

  • Kim SB, Kim JS, Lee JH, Kang SW, Park C, Kim SW (2011) Pretreatment of rice straw by proton beam irradiation for efficient enzyme digestibility. Appl Biochem Biotechnol 164:1183–1191

    Article  CAS  Google Scholar 

  • Koganti S, Ju LK (2013) Debaryomyces hansenii fermentation for arabitol production. Biochem Eng J 79:112–119

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2011) Pulsed electrical field pretreatment of switchgrass and wood chip species for biofuel production. Ind Eng Chem Res 50:10996–11001

    Article  CAS  Google Scholar 

  • Kurian JK, Nair GR, Hussain A, Raghavan GSV (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219

    Article  Google Scholar 

  • Lai LW, Idris A (2013) Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. Bioresources 8(2):2792–2804

    Article  Google Scholar 

  • Lam WC, Kwan TH, Budarin VL, Mubofu EB, Fan J, Lin CSK (2015) Pretreatment and thermochemical and biological processing of biomass. In: Clark J, Deswarte F (eds) Introduction to chemicals from biomass, 2nd edn. Wiley, Chishester, pp 53–88

    Google Scholar 

  • Liu L, Ju M, Li W, Hou Q (2013) Dissolution of cellulose from AFEX-pretreated zoysia japonica in AMIMCl with ultrasonic vibration. Carbohydr Polym 98:412–420

    Article  CAS  Google Scholar 

  • Loman AA, Ju L-K (2014) Arabitol production from glycerol by fermentation. In: Brentin RP (ed) Soy-based chemicals and materials. American Chemical Society, Washington, pp 109–126

    Google Scholar 

  • Loow Y-L, Wu TY, Tan KA, Lim YS, Siow LF, Jahim JMd, Mohammad AW, Teoh WH (2015) Recent advances in application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem 63:8349–8363

    Article  CAS  Google Scholar 

  • Loow Y-L, Wu TY, Jahim JMd, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520

    Article  CAS  Google Scholar 

  • Lu J, Zhou P (2011) Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars. Bioresour Technol 102:6966–6971

    Article  Google Scholar 

  • Luo J, Fang Z, Smith RL Jr (2014) Ultrasound enhanced conversion of biomass to biofuels. Prog Energy Combust 41(1):56–93

    Article  Google Scholar 

  • Mai NL, Ha SH, Koo YM (2014) Efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars. Process Biochem 49:1144–1151

    Article  CAS  Google Scholar 

  • Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylose-derived biochemical. Biofuel Bioprod Biorefining 2:438–454

    Article  CAS  Google Scholar 

  • Marx S, Ndaba B, Chiyanzu I, Schabort C (2014) Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass Bioenergy 65:145–150

    Article  CAS  Google Scholar 

  • Mukherjee A, Dumont MJ, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183

    Article  CAS  Google Scholar 

  • Ninomiya K, Ohta A, Omote S, Ogino C, Takahashi K, Shimizu N (2013) Combined used of completely bio-derived cholinium ionic liquids and ultrasound irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. Chem Eng J 215–216:811–818

    Article  Google Scholar 

  • Ofori-Boateng C, Lee KT (2014a) Sono-assisted organosolv/H2O2 pretreatment of oil palm (Elaeis guineensis Jacq.) fronds for recovery of fermentable sugars: optimization and severity evaluation. Fuel 115:170–178

    Article  CAS  Google Scholar 

  • Ofori-Boateng C, Lee KT (2014b) Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel 119:285–291

    Article  CAS  Google Scholar 

  • Orozco RS, Hernandez PB, Ramirez NF, Morales GR, Luna JS, Montoya AJC (2012) Gamma irradiation induced degradation of orange peels. Energies 5:3051–3063

    Article  CAS  Google Scholar 

  • Pang F, Xue S, Yu S, Zhang C, Li B, Kang Y (2012) Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Bioresour Technol 118:111–119

    Article  CAS  Google Scholar 

  • Pejin DJ, Mojovic LV, Grujic OS, Markov SL, Nikolic SB, Markovic MN (2012) Increase in bioethanol production yield from triticale by simultaneous saccharification and fermentation with application of ultrasound. J Chem Technol Biotechnol 87:170–176

    Article  CAS  Google Scholar 

  • Pike RW, Sengupta D, Institute Minerals Processing Research, Hertwig TA (2008) Integrating biomass feedstocks into chemical production complexes using new and existing processes. Minerals Processing Research Institute Louisiana State University, Baton Rouge

    Google Scholar 

  • Placido J, Imam T, Capareda S (2013) Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour Technol 139:203–208

    Article  CAS  Google Scholar 

  • Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—review. Food Rev Int 29:127–156

    Article  CAS  Google Scholar 

  • Rehman MSU, Kim I, Kim KH (2014) Optimization of sono-assisted dilute sulfuric acid process for simultaneous pretreatment and saccharification of rice straw. Int J Environ Sci Technol 11:543–550

    Article  CAS  Google Scholar 

  • Rodrigues THS, Rocha MVP, Macedo GRD, Goncalves LRB (2011) Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment. Appl Biochem Biotechnol 164:929–943

    Article  CAS  Google Scholar 

  • Sabarez H, Oliver CM, Mawson R, Dumsday G, Singh T, Bitto N, McSweeney C, Augustin MA (2014) Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff. Ultrason Sonochem 21:2084–2091

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  CAS  Google Scholar 

  • Shin SJ, Sung YJ (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038

    Article  CAS  Google Scholar 

  • Singh A, Tuteja S, Singh N, Bishnoi NR (2011) Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresour Technol 102:1773–1782

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley, New York

    Google Scholar 

  • Su MY, Tzeng WS, Shyu YT (2010) An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste. Bioresour Technol 101:6669–6675

    Article  CAS  Google Scholar 

  • Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828

    Article  CAS  Google Scholar 

  • Subhedar PB, Gogate PR (2014) Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw material. Ultrason Sonochem 21:216–225

    Article  CAS  Google Scholar 

  • Sundar S, Bergey NS, Cardona LS, Stipanovic A, Driscoll M (2014) Electron beam pretreatment of switchgrass to enhance enzymatic hydrolysis to produce sugars for biofuels. Carbohydr Polym 100:195–201

    Article  CAS  Google Scholar 

  • Sung YJ, Shin SJ (2011) Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation pretreatment. Biomass Bioenerg 35:3267–3270

    Article  CAS  Google Scholar 

  • Suresh K, Ranjan A, Singh S, Moholkar VS (2014) Mechanistic investigations in sono-hybrid techniques for rice straw pretreatment. Ultrason Sonochem 21:200–207

    Article  CAS  Google Scholar 

  • Teong SP, Yi G, Zhang Y (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16:2015–2026

    Article  CAS  Google Scholar 

  • Tsubaki S, Azuma J (2013) Total fractionation of green tea residue by microwave-assisted alkaline pretreatment and enzymatic hydrolysis. Bioresour Technol 131:485–491

    Article  CAS  Google Scholar 

  • Union of Concerned Scientists (2012) The promise of biomass. Clean power and fuel—if handled right. http://www.ucsusa.org/sites/default/files/legacy/assets/documents/clean_vehicles/Biomass-Resource-Assessment.pdf. Accessed on 14th July 2016

  • Vani S, Binod P, Kuttiraja M, Sindhu R, Sandhya SV, Preeti VE, Sukumaran RK, Pandey A (2012) Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. Bioresour Technol 112:300–307

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    Article  CAS  Google Scholar 

  • Villa-Velez HA, Vaquiro HA, Telis-Romero J (2015) The effect of power-ultrasound on the pretreatment of acidified aqueous solutions of banana flower-stalk: structural, chemical and statistical analysis. Ind Crop Prod 66:52–61

    Article  CAS  Google Scholar 

  • Wang KQ, Xiong XY, Chen JP, Chen L, Su X, Liu Y (2012) Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass Bioenerg 46:301–308

    Article  CAS  Google Scholar 

  • Wu TY, Guo N, Teh CY, Hay JXW (2013) Advances in ultrasound technology for environmental remediation. Springer, Dordrecht. doi:10.1007/978-94-007-5533-8

    Google Scholar 

  • Xia A, Cheng J, Song W, Yu C, Zhou J, Cen K (2013) Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy 61:158–166

    Article  CAS  Google Scholar 

  • Xin LZ, Kumakura M (1993) Effect of radiation pretreatment on enzymatic hydrolysis of rice straw with low concentrations of alkali solution. Bioresour Technol 43:13–17

    Article  Google Scholar 

  • Yang CY, Fang TJ (2014) Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Bioresour Technol 164:198–202

    Article  CAS  Google Scholar 

  • Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316

    Article  CAS  Google Scholar 

  • Yoon M, Choi JI, Lee JW, Park DH (2012) Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation. Radiat Phys Chem 81:999–1002

    Article  CAS  Google Scholar 

  • Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796

    Article  CAS  Google Scholar 

  • Zbinden MDA, Sturm BSM, Nord RD, Carey WJ, Moore D, Shinogle H, Stagg-Williams SM (2013) Pulsed electrical field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110(6):1606–1615

    Article  Google Scholar 

  • Zhang J, Li JB, Wu SB, Liu Y (2013) Advances in the catalytic production and utilization of sorbitol. Ind Eng Chem Res 52:11799–11815

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Bio Eng 2(3):51–68

    CAS  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust 42:35–53

    Article  Google Scholar 

Download references

Acknowledgments

The funding of this study is supported by the Ministry of Higher Education, Malaysia, under the Long Term Research Grant Scheme (LRGS/2013/UKM-UKM/PT/01) and University of Malaya Research Grant (RP002D-13AET). In addition, the authors would like to thank Monash University Malaysia for providing Y.-L. Loow with a postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta Yeong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loow, YL., Wu, T.Y., Yang, G.H. et al. Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 23, 2761–2789 (2016). https://doi.org/10.1007/s10570-016-1023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1023-x

Keywords

Navigation