Skip to main content
Log in

Incorporation of Aloe vera extracts into nanocellulose during biosynthesis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial nanocellulose (BC) and Aloe vera composites were synthesized in situ by Gluconacetobacter hansenii using mannitol-based medium supplemented with 60 % (v/v) of three different Aloe vera portions (Aloe vera gel pulp, Aloe vera gel extract and polysaccharide fraction) under static conditions. The chemical interactions, morphology, crystallinity and mechanical properties influenced by aloe supplementation into BC medium were characterized. The interactions between BC and Aloe, characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, revealed the presence of nitrogenous compounds and aliphatic chains into BC–Aloe composites (BCAC). Moreover, Aloe portions reduced the crystallinity and crystallite size of BCAC, as shown by X-ray diffractometry. The Aloe vera compounds deposited onto BC fibers disrupted the hydroxyl interactions, decreasing the Young’s modulus as well as the tensile strength and water uptake of BCAC. However, aloe incorporation of aloe fractions promoted an increase of the extensibility of BCAC (elongation at break), allowing fiber movement. Live/Dead® cell viability assays revealed a strong adhesion between L929 cells and the surface of BC and BCAC. The results indicated that this material could be successfully applied as a biomaterial for several biomedical applications, a scaffold for skin substitution and regeneration, and cell culture substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bader DL, Bowker P (1983) Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials 4:305–308

    Article  CAS  Google Scholar 

  • Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng C 33:4684–4691

    Article  CAS  Google Scholar 

  • Cagniant D, Magri P, Gruber R, Berlozecki S, Salbut PD, Bimer J, Nansé G (2002) Ammoxidation of cellulose—a structural study. J Anal Appl Pyrol 65:1–23

    Article  CAS  Google Scholar 

  • Campestrini LH, Silveira JLM, Duarte MER, Koop HS, Noseda MD (2013) NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydr Polym 94:511–519

    Article  CAS  Google Scholar 

  • Carlsson CMG, Strom G (1991) Reduction and oxidation of cellulose surfaces by means of cold-plasma. Langmuir 7:2492–2497

    Article  CAS  Google Scholar 

  • Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  CAS  Google Scholar 

  • Grace OM, Simmonds MSJ, Smith GF, van Wyk AE (2008) Therapeutic uses of Aloe L. (Asphodelaceae) in southern Africa. J Ethnopharmacol 119:604–614

    Article  CAS  Google Scholar 

  • Grindlay D, Reynolds T (1986) The aloe-vera phenomenon—a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 16:117–151

    Article  CAS  Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87:1026–1037

    Article  CAS  Google Scholar 

  • Jithendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C (2013) Preparation and characterization of Aloe vera blended collagen–chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 14:7291–7298

    Article  CAS  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  CAS  Google Scholar 

  • Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337:1145–1153

    Article  CAS  Google Scholar 

  • Khoshgozaran-Abras S, Azizi MH, Hamidy Z, Bagheripoor-Fallah N (2012) Mechanical, physicochemical and color properties of chitosan based-films as a function of Aloe vera gel incorporation. Carbohydr Polym 87:2058–2062

    Article  CAS  Google Scholar 

  • Kim K, Kim H, Kwon J, Lee S, Kong H, Im SA, Lee YH, Lee YR, Oh ST, Jo TH, Park YI, Lee CK, Kim K (2009) Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 16:856–863

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393

    Article  CAS  Google Scholar 

  • Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654

    Article  CAS  Google Scholar 

  • Ní Annaidh A, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5:139–148

    Article  Google Scholar 

  • Nieduszy I, Preston RD (1970) Crystallite size in natural cellulose. Nature 225:273–275

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30:599–606

    Article  CAS  Google Scholar 

  • Pereira R, Carvalho A, Vaz DC, Gil MH, Mendes A, Bártolo P (2010) Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol 52:221–230

    Article  CAS  Google Scholar 

  • Pereira R, Mendes A, Bártolo P (2013) Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 5:210–215

    Article  Google Scholar 

  • Pertile RAN, Andrade FK, Alves C Jr, Gamna M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohyd Polym 82:692–698

    Article  CAS  Google Scholar 

  • Reynolds T (2004) Aloes: the genus Aloe. CRC Press, London

    Google Scholar 

  • Saibuatong OA, Phisalaphong M (2010) Novo Aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460

    Article  CAS  Google Scholar 

  • Shaik J, Mohammed JS, McShane MJ, Mills DK (2013) Behavior of articular chondrocytes on nanoengineered surfaces Nano LIFE 3:1–23

    Google Scholar 

  • Silva SS, Caridade SG, Mano JF, Reis RL (2013a) Effect of crosslinking in chitosan/Aloe vera-based membranes for biomedical applications. Carbohydr Polym 98:581–588

    Article  CAS  Google Scholar 

  • Silva SS, Popa EG, Gomes ME, Cerqueira M, Marques AP, Caridade SG, Teixeira P, Sousa C, Mano JF, Reis LR (2013b) An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomater 9:6790–6797

    Article  CAS  Google Scholar 

  • Stumpf TR, Pértile RAN, Rambo CR, Porto LM (2013) Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Mater Sci Eng C 33:4739–4745

    Article  CAS  Google Scholar 

  • Tang WH, Jia SR, Jia YY, Yang HJ (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002a) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002b) CP/MAS (13)C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360

    Article  CAS  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    Article  CAS  Google Scholar 

  • Yu L, Falco C, Weber J, White RJ, Howe JY, Titirici M-M (2012) Carbohydrate-derived hydrothermal carbons: a thorough characterization study. Langmuir 28:12373–12383

    Article  CAS  Google Scholar 

  • Zhang LN, Tizard IR (1996) Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera gel. Immunopharmacology 35:119–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Coordination of Improvement of Higher Education Personnel (CAPES, Brazil), Financier of Studies and Projects (FINEP, Brazil) and National Council for Scientific and Technological Development (CNPq, Brazil). The authors also appreciate the commitment and support of the UFSC laboratory teams: INTELAB, LAMATE, LFFS and LCME at UFSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Rambo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godinho, J.F., Berti, F.V., Müller, D. et al. Incorporation of Aloe vera extracts into nanocellulose during biosynthesis. Cellulose 23, 545–555 (2016). https://doi.org/10.1007/s10570-015-0844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0844-3

Keywords

Navigation